

CITY OF MILLBRAE

Storm Drain Master Plan

FINAL

AUGUST 2018

WEST YOST ASSOCIATES

(THIS PAGE LEFT BLANK INTENTIONALLY)

Storm Drain Master Plan

Prepared for

City of Millbrae

Project No. 478-10-16-05

Project Manager: Millicent A. Crawford, PE

8-23-18

Date

QA/QC Review: Douglas T. Moore, PE

8-23-18

Date

Davis

2020 Research Park Drive, Suite 100
Davis, CA 95618
(530) 756-5905

E. Sacramento

8950 Cal Center Drive, Suite 363
Sacramento, CA 95826
(916) 306-2250

Eugene

1650 W 11th Ave. Suite 1-A
Eugene, OR 97402
(541) 431-1280

Irvine

6 Venture, Suite 290
Irvine, CA 92618
(949) 517-9060

Phoenix

4505 E Chandler Boulevard, Suite 230
Phoenix, AZ 85048
(602) 337-6110

Pleasanton

6800 Koll Center Parkway, Suite 150
Pleasanton, CA 94566
(925) 426-2580

Portland

4949 Meadows Road, Suite 125
Lake Oswego, OR 97035
(503) 451-4500

Sacramento

2725 Riverside Boulevard, Suite 5
Sacramento, CA 95818
(916) 504-4915

Santa Rosa

2235 Mercury Way, Suite 105
Santa Rosa, CA 95407
(707) 543-8506

Walnut Creek

1777 Botelho Drive, Suite 240
Walnut Creek, CA 94596
(925) 949-5800

WEST YOST ASSOCIATES

Table of Contents

Chapter 1. Introduction, Project Purpose and Goals

1.1 Introduction	1-1
1.2 Project Purpose and Goals	1-3

Chapter 2. Summary of Relevant Studies and Data

2.1 Relevant Studies and Reports	2-1
2.1.1 Storm Drain Technical Memoranda D1, D2, D3a, F2 and F3, 1	2-1
2.1.2 Airport Pump Station Data	2-1
2.1.3 Hillcrest Pump Station Data	2-2
2.1.4 Cowan Pump Station Data	2-2
2.1.5 Asset Vulnerability Profile, San Mateo County Sea Level Rise Vulnerability Assessment, Highline Canal Tide Gates, April 2017	2-3
2.1.6 Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore, Final Report, May 2016	2-3
2.1.7 Millbrae Technical Provisions for Public Works Construction	2-4
2.1.8 Draft Millbrae 2040 General Plan Update	2-4
2.1.9 Millbrae Green Infrastructure Workplan	2-4
2.1.10 Federal Emergency Management Agency Flood Insurance Study Update	2-4
2.2 Topographic Mapping	2-5
2.3 Datum Conversaion	2-5

Chapter 3. Field Evaluations

3.1 Site Visits	3-1
3.2 Field Evaluations	3-6
3.2.1 Link and Node Naming Scheme and City Grid System	3-6
3.2.1.1 Node Naming Scheme	3-6
3.2.1.2 Link Naming Scheme	3-7
3.2.2 Data Collected	3-7
3.3 GIS Database	3-8

Chapter 4. Performance and Design Criteria

4.1 Summary and Review of City of Millbrae Design Criteria	4-1
4.2 Summary and Review of Relevant San Mateo County Design Criteria	4-1
4.3 Summary and Review of Relevant Santa Clara County Design Criteria	4-2
4.4 Summary and Review of Relevant City of Vacaville Drainage Design Criteria	4-2
4.5 Summary and Review of Relevant Vallejo Sanitation and Flood Control District	4-3
4.6 Summary and Review of Relevant City of Dixon Drainage Design Criteria	4-4
4.7 Summary of Recommended Performance and Design Criteria to be used in this Storm Drain Master Plan	4-4
4.7.1 Recommended Performance Criteria	4-5
4.7.2 Recommended Design Criteria	4-5

Table of Contents

Chapter 5. Model Development and Existing Conditions Evaluations

5.1 Hydrologic Model Development and Results	5-1
5.1.1 Climate	5-1
5.1.2 Watersheds	5-3
5.1.3 Catchments	5-4
5.1.3.1 Catchment Width	5-4
5.1.3.2 Catchment Hydrologic Soil Group	5-5
5.1.3.3 Catchment Land Use & Imperviousness	5-5
5.1.3.4 Catchment Slope	5-5
5.1.3.5 Rainfall Losses and Infiltration	5-5
5.1.3.6 Manning's Roughness Coefficients for Catchments	5-6
5.2 Hydrologic Model Calibration And Results	5-6
5.2.1 Hydrologic Model Calibration	5-6
5.2.2 Hydrologic Model Results	5-7
5.3 Hydraulic model development	5-8
5.3.1 Geometry	5-8
5.3.1.1 Node Invert Assumptions	5-8
5.3.1.2 Culvert and Bridge Crossings	5-8
5.3.1.3 Open Channel Cross Sections	5-9
5.3.1.4 Street Section Assumptions	5-9
5.3.1.5 Overland Flow Sections	5-9
5.3.2 Hydraulic Model Inputs	5-10
5.3.2.1 Manning's N Values for Pipe Materials and Channels	5-10
5.3.2.2 Pump Station Data	5-10
5.3.2.3 Boundary Conditions	5-11
5.3.2.4 External Flow Assumptions	5-11
5.4 Hydraulic Model Results and Verification	5-11
5.5 Compliance with Performance Criteria	5-12
5.5.1 Northern Lomita Creek Watershed	5-12
5.5.2 Southern Lomita Creek Watershed	5-12
5.5.3 Central Millbrae Watershed	5-13
5.5.4 Murchison Drive Watershed	5-15
5.5.5 Millbrae Station Area Specific Plan Watershed	5-16
5.5.6 Mills Estates Watershed	5-16

Chapter 6. Recommended Stormwater Conveyance Improvements

6.1 City Wide Model Results with Recommended Improvements	6-1
6.1.1 General Recommendations	6-3
6.1.2 Capital Improvement Projects	6-5
6.1.2.1 Capital Improvement Project One	6-5
6.1.2.2 Capital Improvement Project Two	6-6
6.1.2.3 Capital Improvement Project Three	6-6
6.1.2.4 Capital Improvement Project Four	6-6
6.1.2.5 Capital Improvement Project Five	6-7
6.1.2.6 Capital Improvement Project Six	6-7
6.1.2.7 Capital Improvement Project Seven	6-8
6.1.2.8 Capital Improvement Project Eight	6-8

Table of Contents

6.1.2.9 Capital Improvement Project Nine.....	6-8
6.1.2.10 Capital Improvement Project Ten.....	6-8
6.1.3 Additional Considerations	6-9
6.2 Cost Estimates.....	6-9

Chapter 7. Conclusions and Recommendations

7.1 Conclusions	7-1
7.2 Recommendations.....	7-1

Chapter 8. References

8.1 References	8-1
----------------------	-----

List of Tables

Table 5-1. Intensity, Duration and Frequency of Rainfall in Millbrae (Millbrae, 2005)	5-2
Table 5-2. Spatial Distribution of Rainfall Intensity Across Millbrae, based on Elevation	5-3
Table 5-3. Rational Method Runoff Coefficients (Millbrae, 2005)	5-6
Table 5-4. Calibration of the Watershed Width in XPSWMM to Match Millbrae's Rational Method Runoff Computation.....	5-7
Table 5-5. Peak Runoff by Watershed for the 10-year and 100-year Events	5-8
Table 5-6. Hydraulic Model Existing Condition Pump Station Input Data	5-10
Table 6-1. Recommended Improvements	6-2

List of Figures

Figure 3-1. Millbrae Storm Drain Infrastructure and City Infrastructure Map Grid	3-9
Figure 5-1. Spatial Distribution of Rainfall by Elevation Across Millbrae.....	5-17
Figure 5-2 General Plan Land Use.....	5-18
Figure 5-3. Transforming a Typical Street Section to a Trapezoidal Approximation (City of Sacramento, 1996)	5-9
Figure 5-4. 10-Year, 24-Hour Storm Event Performance Criteria Violations	5-19
Figure 5-5. 100-Year, 24-Hour Storm Event Performance Criteria Violations	5-20
Figure 6-1. Millbrae Storm Drain System Recommended Improvements	6-10
Figure 6-2. Recommended Improvements: 10-Year, 24-Hour Storm Event Performance Criteria Violations	6-11
Figure 6-3. Recommended Improvements: 100-Year, 24-Hour Storm Event Performance Criteria Violations	6-12

Table of Contents

List of Appendices

- Appendix A: Mapbook
- Appendix B: Rainfall Depths by Catchment
- Appendix C: XPSWMM Hydraulic Model Inputs
 - Existing Link Inputs 10-year and 100-year
 - Improvements Inputs 10-year
 - Improvements Inputs 100-year
 - Inputs for Nodes
- Appendix D: XPSWMM Hydraulic Model Results
 - Links
 - Nodes

List of Acronyms and Abbreviations

Airport	San Francisco International Airport
BART	Bay Area Rapid Transit
Bay	San Francisco Bay
C	Runoff Coefficients
cfs	Cubic feet per Second
CIP	Capital Improvement Program
City	City of Millbrae
F	Intensity Factor
FEMA	Federal Emergency Management Agency
FIRMs	Flood Insurance Rate Maps
GIS	Geographic Information System
gpm	Gallons Per Minute
GR	General Recommendation
HGL	Hydraulic Grade Line
I	Rainfall Intensities
I-280	Interstate 280
M	Million
MSASP	Millbrae Station Area Specific Plan
NAVD88	North American Vertical Datum of 1988
NGVD 29	National Geodetic Vertical Datum of 1929
NPDES	Pollutant Discharge Elimination System
NRCS	Natural Resources Conservation Services
O&M	Operations and Maintenance
Q = CIAF	Rational Method
RPM	Revolutions Per Minute
SDMP	Storm Drain Master Plan
TDH	Total Dynamic Head
West Yost	West Yost Associates

This Storm Drain Master Plan (SDMP) for the City of Millbrae (City) describes and evaluates the City's existing storm drain system using performance criteria developed in this SDMP and identifies recommended improvements to mitigate system deficiencies. This chapter provides an overview of the City of Millbrae's storm drain system and watersheds, discusses known flooding issues, and outlines the purpose and goals of this SDMP.

1.1 INTRODUCTION

The City is 3.2 square miles in area. As shown on Figure 1-1, it is located on the San Francisco Peninsula bordered by the San Francisco International Airport (Airport) to the east, the City of Burlingame to the south, the City of San Bruno to the north, and the State of California Fish and Wildlife refuge to the west. Elevations within the City range from 620 feet North American Vertical Datum of 1988 (NAVD88) on the City's western boundary near sea level at the Bay. With this topography, the area west of Interstate 280 (I-280) drains into San Andreas Lake, and I-280 and the areas east of I-280 generally drain through the City to the Bay. Water from San Andreas Lake does not cross I-280 and enter the City. The City's drainage system consists of a network of 21 miles of storm drains, 3 pump stations, and approximately three miles of open creeks and ditches that route storm runoff through the City to the Bay.

The City is divided into the following watersheds (see Figure 1-1).

- Northern Lomita Canal Watershed (225 acres) - This watershed drains the northern part of the City through a piped storm drain system (42-inch to 48-inch diameter) into Lomita Creek and the Lomita Canal. The runoff from this watershed is lifted by the Airport Pump Station (Photograph 1-4) into the Highline Canal east of the Bay Area Rapid Transit (BART) tracks.
- Southern Lomita Canal Watershed (164 acres) - This watershed drains through a piped storm drain system, which in turn flows into the Lomita Creek, which in turn flows into the Lomita Canal at the Landing Lane Bowl. The runoff from this watershed is lifted by the Airport Pump Station into the Highline Canal east of the BART tracks.
- Central Millbrae Watershed - (942 acres) - This watershed drains through several storm drainage systems to the Highline Canal (Photograph 1-1). Water from the Bay is prevented from entering the Highline Canal by twin box culverts (near South McDonnell Road), each 15 feet wide by 15 feet tall, each with a large flap gate (see Photograph 1-2). Flap gates allow water to flow from the City to the Bay, but prevent back flow from the Bay to the City. However, these flap gates sometimes do not close completely because mud accumulates below the gates and prevents the gates from sealing closed. This watershed also includes the Hillcrest Pump Station (Photograph 1-3), which lifts water from the Hillcrest Drive undercrossing under the BART tracks.
- Millbrae Station Area Specific Plan (MSASP) Watershed (67 acres) – This watershed drains through a piped storm drain system to the open channels in the US-101 interchange and then flows into a storm drain to the Cowan Pump Station (Photograph 1-7).

- Murchison Drive Watershed (430 acres) - This watershed drains through series of storm drains and Millbrae Creek to the El Portal Canal (Photograph 1-5). The El Portal Canal drains to the Bay. Water from the Bay is blocked from entering the El Portal Canal by twin 84-inch diameter culverts (under the Old Bayshore Highway), each with a flap gate (see Photograph 1-6).
- Mills Estates Watershed (130 acres) – This watershed drains through a 45-inch storm drain into a City of Burlingame storm drain system. The runoff from this watershed flows to the Cowan Pump Station, where it is lifted by the Cowan Pump Station (Photograph 1-7) into the El Portal Canal (Photograph 1-5).

Average temperatures in Millbrae range from a daily average low of 42°F in the winter (December and January) to an average daily high temperature of about 72°F in August and September. Average annual rainfall totals 20.1 inches at the Airport to about 40 inches per year at San Andreas Lake. Most of the rainfall occurs between October and May. January is typically the wettest month, with an average rainfall of almost 4.5 inches. July is typically the driest month, with an average rainfall of only 0.03 inches.

There are several known flooding problems within the City. The locations of the flooding problems are shown on Figure 1-1 with red stars (red numbering on Figure 1-1 corresponds to the descriptions below).

1. Flooding of the Landing Lane and San Anselmo Avenue Neighborhood has been reported to occur due to the Lomita Canal being overgrown with riparian and aquatic vegetation. Because of the presence of San Francisco Garter Snake habitat, it is difficult for San Francisco Airport staff to obtain permits to adequately maintain the Lomita Canal.
2. Flooding of the MSASP Area near Millbrae Avenue and the Highway 101 Interchange occurs when inlets become blocked by vegetation and trash from the interchange. The drainage channels through this area are also overgrown with aquatic and riparian vegetation that may contribute to poor drainage. The vegetation cannot be regularly maintained because of the presence of endangered species. The MSASP area floods about every year to the top of curb. The downstream drainage channel flows to the Cowan Pump Station.
3. At the east corner of the Green Hills Golf Course, flooding occurs where flow enters a 42-inch storm drain and a 48-inch storm drain flow split structure. The entrance conditions restrict the ability of the water to enter the storm drains efficiently, thereby contributing to the flooding. The area is also lower than downstream areas of the City.
4. Along Hillcrest Avenue between Minorca Way and El Paseo Avenue, flooding has also occurred in the past at a house that is below the street level. At this location, the ground changes from hill slopes to flatter ground and the storm drain serving this area is only 12-inches in diameter. The City recently constructed a new storm drain line to serve this area.
5. Some flooding has occurred at Taylor School because, although there is a 24-inch storm drain stub available to the school, the school has not yet connected to the storm drain system.

Chapter 1

Introduction, Project Purpose & Goals

1.2 PROJECT PURPOSE AND GOALS

The purpose of this SDMP is to identify improvements needed to eliminate or reduce flooding during the appropriate design storms. The purpose has been accomplished by achieving the following goals:

- Collect and utilize to the extent possible previous relevant studies and data (Chapter 2) and collect field data on the storm drain system, including pipe and channel sizes, materials, and elevations (Chapter 3).
- Review and confirm the flood protection performance and design criteria (Chapter 4).
- Prepare a hydrologic and hydraulic model of the storm drain system to determine its performance capabilities (Chapter 5).
- Identify the known flooding problems from historical storm events and from the modeling of the 10-year and 100-year design storms (Chapter 5).
- Determine the causes of the flooding problems (Chapter 6).
- Identify and size improvements to achieve the desired flood control performance and design criteria (Chapter 6).
- Estimate the construction and capital costs of the improvements (Chapter 6).
- Summarize the conclusions and recommendations from this SDMP (Chapter 7).

Photo 1-1. Highline Canal near South McDonnell Road

Chapter 1

Introduction, Project Purpose & Goals

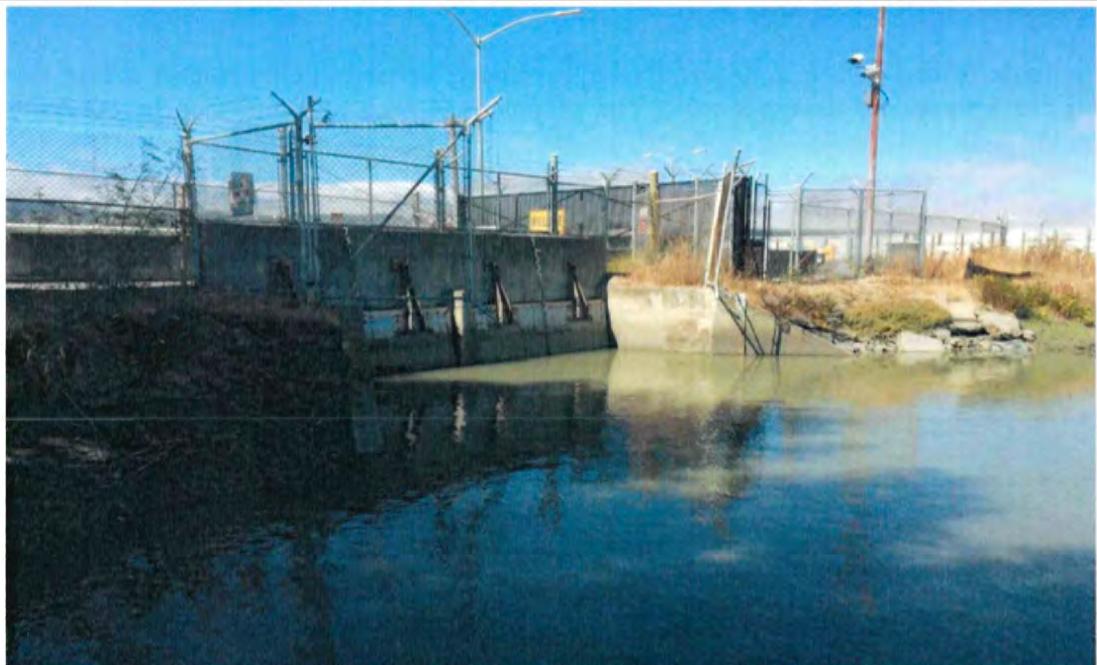


Photo 1-2. Highline Canal Box Culvert Flap Gates

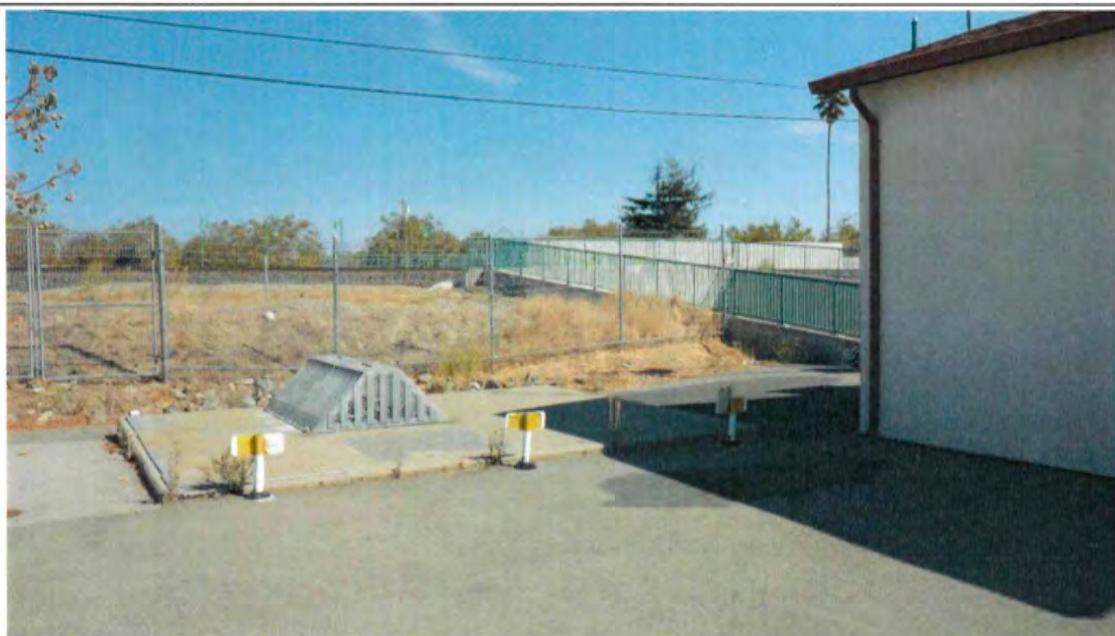


Photo 1-3. Hillcrest Pump Station

Chapter 1

Introduction, Project Purpose & Goals

Photo 1-4. Airport Pump Station

Photo 1-5. El Portal Canal near the Old Bayshore Highway

Chapter 1

Introduction, Project Purpose & Goals

Photo 1-6. El Portal Canal Culvert Flap Gates at the Old Bayshore Highway

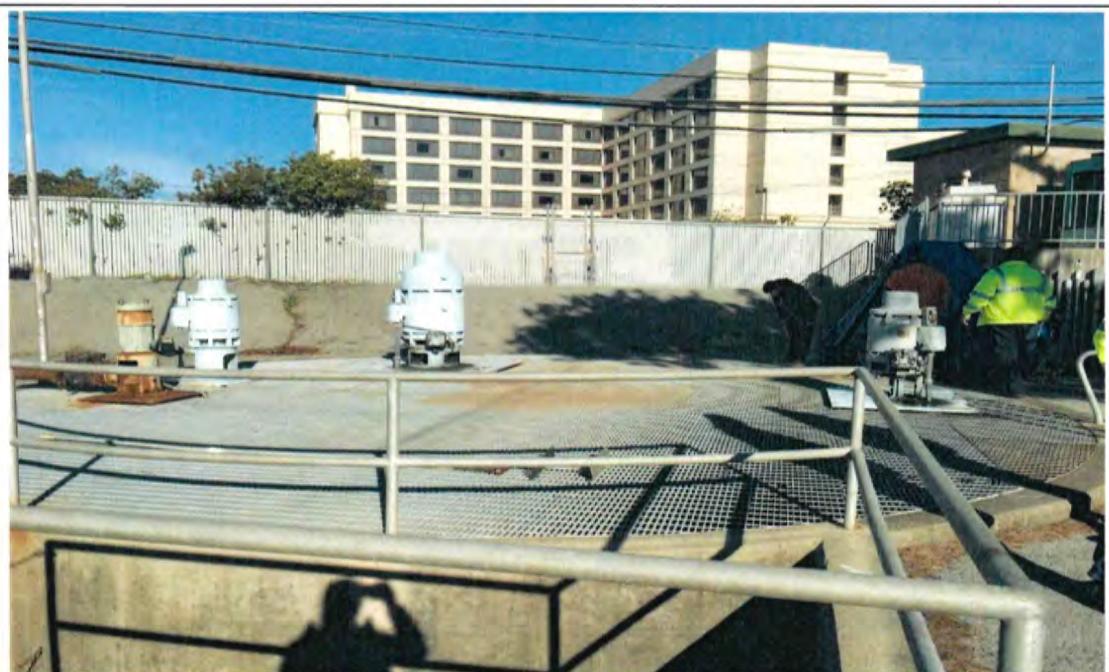
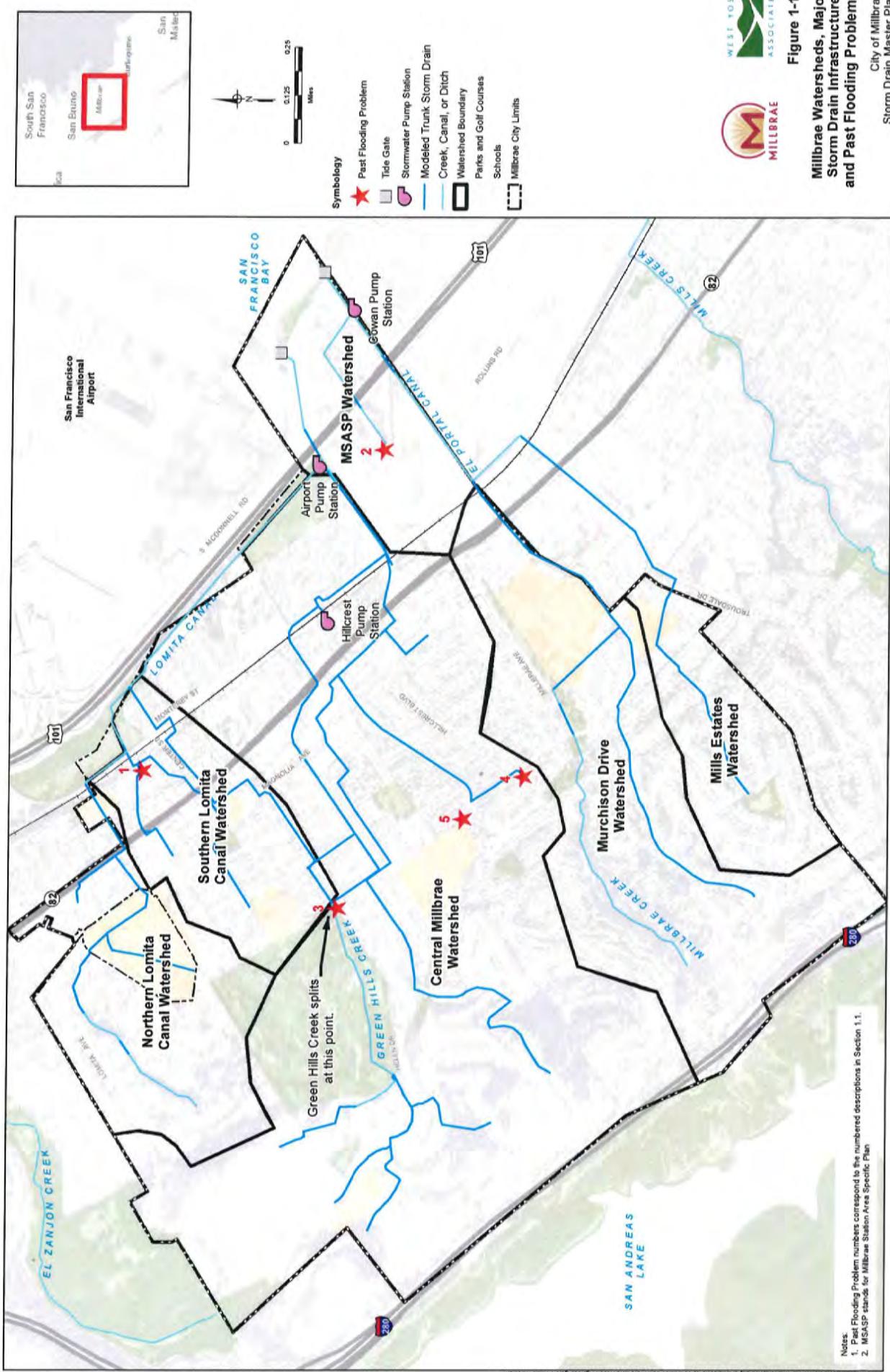



Photo 1-7. Cowan Pump Station

Figure 1-1
Millbrae Watersheds, Major Storm Drain Infrastructure, and Past Flooding Problems
 City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

This chapter of the SDMP identifies and summarizes past and current studies and reports relevant to this SDMP, and presents the topographic mapping data used in this SDMP. Chapter 3 describes the field investigations.

2.1 RELEVANT STUDIES AND REPORTS

Provided below is a summary of the studies and reports collected during the development of the SDMP, and relevant to the master planning effort.

2.1.1 Storm Drain Technical Memoranda D1, D2, D3a, F2 and F3, 1

Combined, these memoranda represent a storm drain master plan for the City, published in 1999. These memoranda identify and model the major stormwater infrastructure in the City. However, the effort divided the City into five watersheds (Northern Lomita Creek, Lomita Creek, Central Millbrae, Murchison Drive, and Trousdale Basin), modeled separately. The storm drain system modeling for these memoranda was prepared using HydraGraphics (Version 5.85) and Hydra (Version 6.0). These very old modeling programs lack the capabilities of current software (like the XP-SWMM model used for this SDMP). The old software lacks the ability to model backwater from the bay, meaning all the modeled storm drains were assumed to free-flow into the Bay. These memoranda also identify several flooding problems within the City, and identify improvements to address the flooding, with costs ranging from \$1.2 to \$1.9 million. With inflation to 2016, the cost of these improvements would be about \$2.0 to \$3.2 million.

These memoranda provide information about the sizes and connectivity of several major trunk storm drains, and this information was used where field work was unable to confirm drainage system configuration.

2.1.2 Airport Pump Station Data

Information about the Airport Pump Station was received from the City and from the Airport, and includes:

- Millbrae Drainage Pump Station Improvement As-Built Drawings (October, 2010)
- Drainage Pumping Station No. 3 Architectural Plan and Sections (April, 1966)
- Cascade Pump Curves, Drawings and Specifications (Various dates)
- Interviews with City staff

The Airport Pump Station is operated jointly by the City and the Airport. The Airport side of the pump station receives water from the South Lomita Canal and pumps it into the Highline Canal. The City side of the pump station receives water from a 33-inch storm drain running under the Highline Canal and pumps it up into the Canal. The wet well on the airport-owned side of the pump station is 23 feet wide by 18 feet deep by approximately 40 feet long, with a floor elevation of -18.0 feet National Geodetic Vertical Datum of 1929 (NGVD29) and a sump floor elevation

of -24.5 feet NGVD29. This pump station has three main pumps, as summarized below, with an additional small summer pump on each side of the pump station:

- Pumps 1 & 2 on the Airport-operated side of the pump station – Johnston model 36PO vertical pumps with capacities of 53,000 gallons per minute (gpm) at a total dynamic head (TDH) of 7.5 feet, 500 revolutions per minute (RPM), 200 horsepower motors. Pump on elevation for pump 1 is -10.0 feet NGVD29, and pump off elevation is -12.5 feet NGVD29. Pump on elevation for pump 2 is -9.0 feet NGVD29, and pump off elevation is -12.5 feet NGVD29.
- Pump 3 on the City-operated side of the pump station – Cascade Pump 24 MF with a capacity of 18,000 gpm at 22 feet of head, 700 RPM, 125 horsepower motor, Cascade Pump Company pump curve number MF2410CD4. The pump turns on at a wet well depth of 12 feet and off at a depth of 2 feet. The datum was assumed to be NAVD88.

2.1.3 Hillcrest Pump Station Data

Data about the Hillcrest Pump Station was received from the City, and includes:

- San Francisco Bay Area Rapid Transit District Hillcrest Boulevard Site Grading and Drainage Drawings (November, 2003)
- Pump curves (August, 2008) and
- Maintenance records (October, 2015)

The pump station receives water from the Hillcrest Boulevard underpass below the BART tracks and discharges water to the 66-inch line on the east side of the tracks. The wet well is 10.5 feet wide by 11 feet long and 15 feet deep. This pump station has 2 main pumps, that alternate in use, as summarized below, and one smaller 50 gpm pump, used only for dewatering:

- Pumps 1 & 2 operate alternately, with one pump always acting as a backup for the other. They are each ITT Flygt CP3170x-443 with capacities of 1,500 gpm each at 40 feet of head, 1,750 RPM, 30 horsepower motors, Flygt pump curve number 63-443-00-2330, pump on elevation for pump 1 is 5.75 ft (likely NGVD29, based on a comparison between LiDAR elevations at the pump station and the elevations shown on available drawings), and pump off elevation for pump 1 is 3.25 feet in the same datum. Pump 2 alternates at the same on/off elevations.

2.1.4 Cowan Pump Station Data

Cowan Pump Station is operated and maintained by the City of Burlingame, but the station serves both Burlingame and Millbrae and maintenance costs are shared. Information about the Cowan Pump Station was received from the City and the City of Burlingame's consultant Mott MacDonald, currently undertaking a rehabilitation of the pump station, and includes:

- Pump Curves for the existing pumps 1, 2 & 3
- Correspondence with City staff, detailing the layout of the pump station

Chapter 2

Summary of Relevant Studies and Data

- Drawings produced during the ongoing rehabilitation of the pump station by Mott MacDonald
- Discussions with City staff regarding Burlingame's drainage to the pump station

The pump station lifts water from the Millbrae Station Area as well as the City of Burlingame and discharges into the El Portal Canal. According to City staff, the relative contributions are approximately 40 percent from the City and 60 percent from the City of Burlingame. The wet well is 30 feet in diameter, with a bottom elevation of -11.25 (assumed to be in the NAVD 88 from comparisons of the as-built drawing with LiDAR data). This pump station has three major pumps and a small 5-horsepower dewatering pump. The three major pumps are described below (with elevations assumed to be in the NAVD88 Datum):

- Pumps 1 & 2 – Johnston 20PO with a capacity of 9,000 gpm at 16 feet of head, 875 RPM, pump number JQ-1851-52, 40 horsepower motor, Pump 1 on elevation is -5.35 feet, Pump 2 on elevation is -5.05 and both pumps' off elevation is -7.25 feet.
- Pump 3 – Johnston 30PO with a capacity of 22,500 gpm at 16 feet of head, 585 RPM, pump number JQ-1850, 100 horsepower motor, pump on elevation is -4.25 feet, and pump off elevation is -7.25 feet.

[2.1.5 Asset Vulnerability Profile, San Mateo County Sea Level Rise Vulnerability Assessment, Highline Canal Tide Gates, April 2017](#)

This document identifies the Highline Canal Tide Gates as twin 15 foot by 15-foot tide gates that protect the City, Caltrain Station, and the Lomita Canal from flooding from high tides. The gates currently stick in the mud and stay open during much of the year. Clearing the mud from this area is difficult due to permitting issues, but the gates could be rehabilitated to alleviate issues in the canal. The annual Operations and Maintenance (O&M) cost of the tide gate is identified as \$250,000. The tide gate could be replaced at a cost of about \$1.5 million. One alternative to the tide gate is identified and includes sealing the gate and constructing a pump station (no cost is identified for the pump station).

[2.1.6 Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore, Final Report, May 2016](#)

This document develops a series of future inundation maps for various sea level rise values ranging from 12 inches to 108 inches. Table 2-1 of this document identifies the most likely sea level rise value for 2030 is 6-inches, for 2050 is 11 inches, and for 2100 is 36 inches. Table 3-1 of the document provides current extreme tide elevations for the Bay near the City, including the following:

- Mean Higher High Tide: 6.81 feet NAVD88
- 10-Year Extreme Tide: 9.06 feet NAVD88
- 25-Year Extreme Tide: 9.49 feet NAVD88
- 50-Year Extreme Tide: 9.86 feet NAVD88
- 100-Year Extreme Tide: 10.28 feet NAVD88
- 500-Year Extreme Tide: 11.50 feet NAVD88

Chapter 2

Summary of Relevant Studies and Data

This document also states that extreme tides in the future can be estimated by adding the sea level rise values to the current extreme tide values.

2.1.7 Millbrae Technical Provisions for Public Works Construction

The City's existing drainage design criteria are provided in the City's, Department of Public Works Engineering Division, Part II Technical Provisions for Public Works Construction (March 2005), Section 6 Storm Drainage Systems. These criteria are primarily for the evaluation of drainage systems in support of land development projects. The Technical Provisions were referenced in this effort for existing storm drain design standards and hydrologic analysis requirements. The City's Time of Concentration and rainfall intensity table was used in conjunction with the Rational Formula with the City's specified Intensity Factor to calibrate the hydrologic model update prepared as part of this master planning effort. The calibration is further discussed in Chapter 5.

2.1.8 Draft Millbrae 2040 General Plan Update

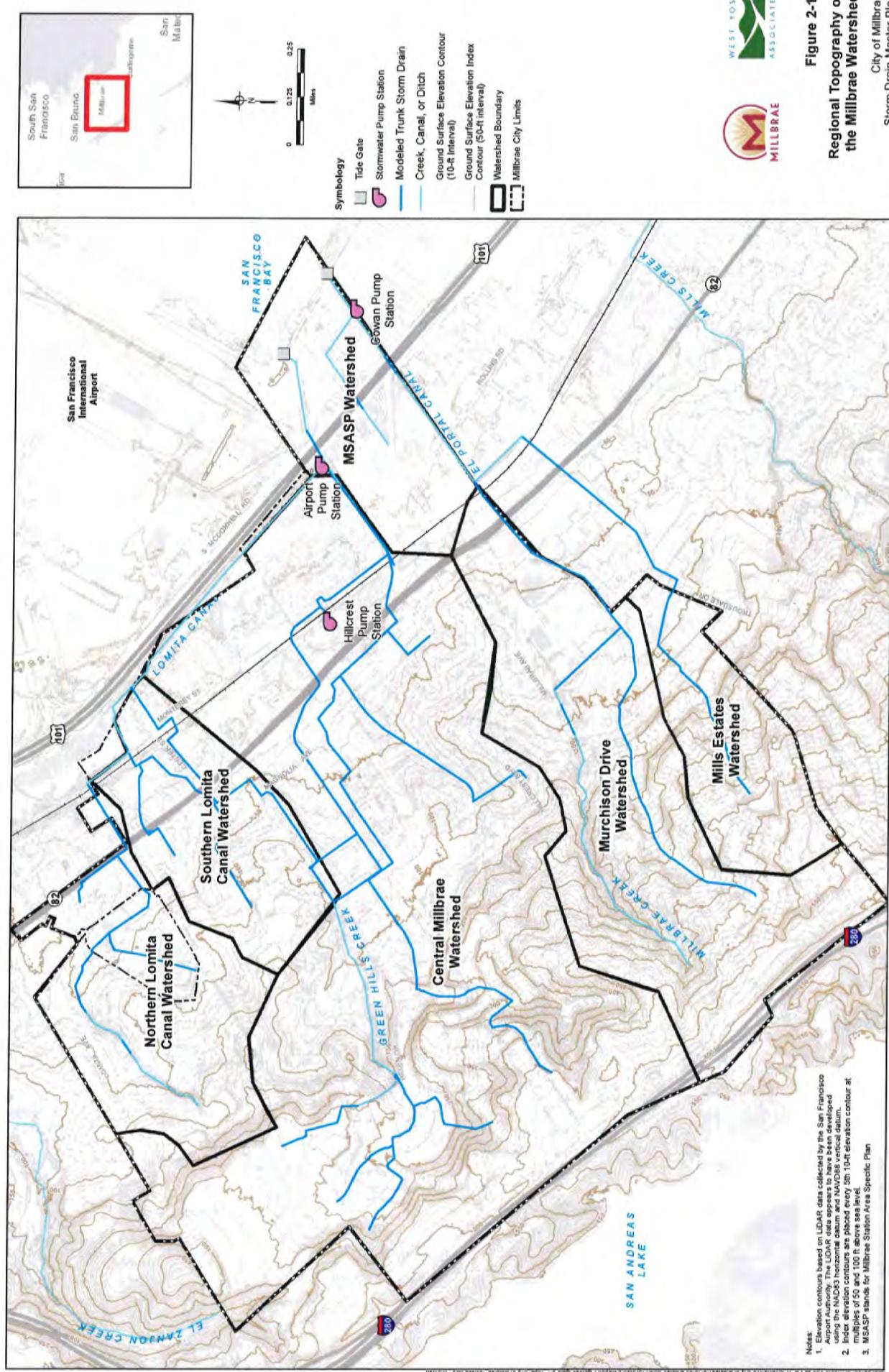
Information in the Draft Millbrae General Plan Update provides an overview of the City's storm drainage system, including a review of climate, system layout, and past problems that informed some of the proposed improvements that are analyzed and discussed in Chapters 5 and 6 of this SDMP.

2.1.9 Millbrae Green Infrastructure Workplan

The City has developed a green infrastructure workplan with the goal of meeting its regional water quality control board municipal stormwater National Pollutant Discharge Elimination System (NPDES) permit requirements to reduce pollutants in stormwater runoff. "Green Infrastructure" is infrastructure that uses vegetation, soils, and natural processes to improve stormwater runoff water quality. While site specific green infrastructure opportunities will likely be sought during the design phase of each system improvement identified in this SDMP, green infrastructure is an important consideration throughout the planning and implementation process and thus is included as a design criterion, as discussed in Chapter 4.

2.1.10 Federal Emergency Management Agency Flood Insurance Study Update

The Federal Emergency Management Agency (FEMA) published preliminary Flood Insurance Rate Maps (FIRMs) in August 2015 that show 127 acres of the City would be inundated in the 1 percent chance flood (100-year event) and an additional 46 acres in the 0.2 percent chance flood (500-year event). This preliminary floodplain is much larger than the floodplain shown on the current FIRMs that were published in October 2012, which had about 21 acres of 1 percent floodplain and 88.4 acres of 0.2 percent flood plain within the City. This proposed larger floodplain indicates many more houses and businesses are at risk of flooding than was previously known. When adopted, the new FIRMs will result in many flood protection requirements for development and redevelopment within the floodplain. This information informed some recommendations proposed in Chapter 6 of this SDMP.


2.2 TOPOGRAPHIC MAPPING

LiDAR data was provided by the City and was collected by the San Francisco Airport Authority. The date of the data collection was not available. The LiDAR mapping appears to have been developed using the NAD83 horizontal datum and NAVD88 vertical datum, based on a comparison with other available data sets in these datums. Topographic mapping was developed from the LiDAR data, including Figure 2-1 depicting the regional topography of the entire watershed.

2.3 DATUM CONVERSATION

Many data sources provided information in the NGVD29 datum and it was necessary to convert elevations into the NAVD88 Datum for use in modeling. For this purpose, the National Geodetic Survey's VertCon program (https://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl) was used to estimate the correct conversion. The conversion between datums varies by location. For the City of Millbrae, the difference is approximately $NGVD29 + 2.8 \text{ feet} = NAVD88$ and this was the conversion used for the SDMP.

(THIS PAGE LEFT BLANK INTENTIONALLY)

Figure 2-1
Regional Topography of the Millbrae Watershed
 City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

This chapter of the SDMP describes the site visits conducted by West Yost Associates (West Yost) and presents photographs of critical drainage infrastructure. In addition, this chapter describes the methodology used to systematically gather data required for the model (discussed further in Chapter 5) and how it was incorporated into the City's Geographic Information System (GIS) database.

3.1 SITE VISITS

Site visits were conducted by West Yost, in collaboration with City staff, at three different times during the preparation of this plan. The initial field visits occurred over several weeks in August and September 2016 and focused on mapping and measuring storm drain inlets and some manholes in the lower portions of the watershed. Several locations were unable to be accessed and a second field visit was scheduled for December 2016. The second visit focused on visiting the interior of the Airport, Cowan, and Hillcrest pump stations and Capuchino High School. After initial model setup and GIS mapping, additional locations were visited in August 2017 to capture information at previously obstructed, buried, or unknown locations. The City of Millbrae also performed extensive reconnaissance of stormdrains and manholes, both visually, and with closed circuit television where access was limited. The following photos show a selection of critical drainage infrastructure.

Photo 3-1. Exterior, Airport Pump Station, August 2016

Photo 3-2. Highline Canal Tide, August 2016

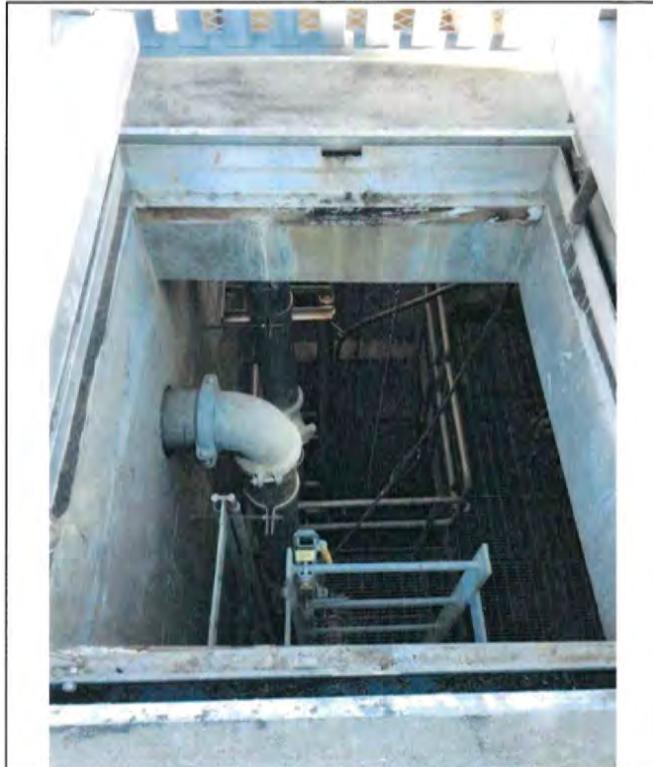

Photo 3-3. Interior, Cowan Pump Station, December 2016

Photo 3-4. Cowan Pump Station Outfalls to El Portal Canal, December 2016

Photo 3-5. El Portal Canal Tide Gates, August 2017

Photo 3-6. Interior, Hillcrest Pump Station Wet Well, December 2016

Photo 3-7. Exterior, Hillcrest Pump Station, December 2016

Photo 3-8. Landing Lane Bowl and Trash Capture Devices at Lomita Canal behind Landing Lane, August 2017

Photo 3-8. Highline Canal east of Millbrae Station, looking west, August 2017

3.2 FIELD EVALUATIONS

Field data collection was focused on collecting the information needed to better define the drainage system and to perform modeling. The following sections describe the format of the data collection records as links and nodes and the information collected for each type of feature in the stormdrain system.

3.2.1 Link and Node Naming Scheme and City Grid System

A link and node naming scheme was developed, based on a City grid system provided by AIMS Team, LLC (AIMS, 2016), and based on mapping developed as part of the City's Sewer SDMP Update. The grid naming includes grid elements A1, A2, A3, A4, B1, B2, B3, B4, B5, C1, C2, C3, C4, C5, D1, D2, D3, D4, D5, E2, E3, E4, F2, F3, F4. Note that there is no grid element E1 or F1 in the City's Grid. The grid system is shown on Figure 3-1.

3.2.1.1 Node Naming Scheme

The node naming scheme creates a six-character, four-part alpha-numeric node name, as shown in the following example:

Node Name: U M D3 01

Where:

U = Watershed Name (See Figure 3-1)

M = Type of Node

D3 = Grid Number

01 = Point Number

Watershed names form the first component of the node name and are represented by the following letter scheme:

Mills Estates	=	E
Central Millbrae	=	C
Northern Lomita Creek	=	N
Southern Lomita Creek	=	S
San Bruno	=	B
MSASP	=	M
Murchison Drive	=	U

Type of node forms the second component of the node name and are represented by the following notations:

Drainage Inlet	=	D
Maintenance Hole	=	M
Underground Pipe Junction	=	J
Bubble Out	=	B
Culvert Inlet	=	I
Culvert Outlet	=	O
Pump Station	=	P
Flow Split	=	F

The third component of the node name represents the grid element, which indicates the node's location within the City's grid. Each grid element includes two alphanumeric characters.

The fourth component of the node name is a two-digit number from 01-99, based on the number of nodes in each grid element.

3.2.1.2 Link Naming Scheme

The link naming scheme creates a 13-character alpha numeric link name, based on the combination of the upstream node name and the downstream node name, separated by a hyphen, as shown in the following example:

Link: UMD301–UMD302

which links node UMD301 to node UMD302

3.2.2 Data Collected

The following data was collected, whenever possible during the field visits. All elevations were recorded in feet, NAVD88. Field data collected was updated in the City's storm drain system GIS file, and was used to create the hydrologic and hydraulic modeling discussed in Chapter 5.

Manholes

- Invert Elevation
- Rim Elevation

Drain Inlets

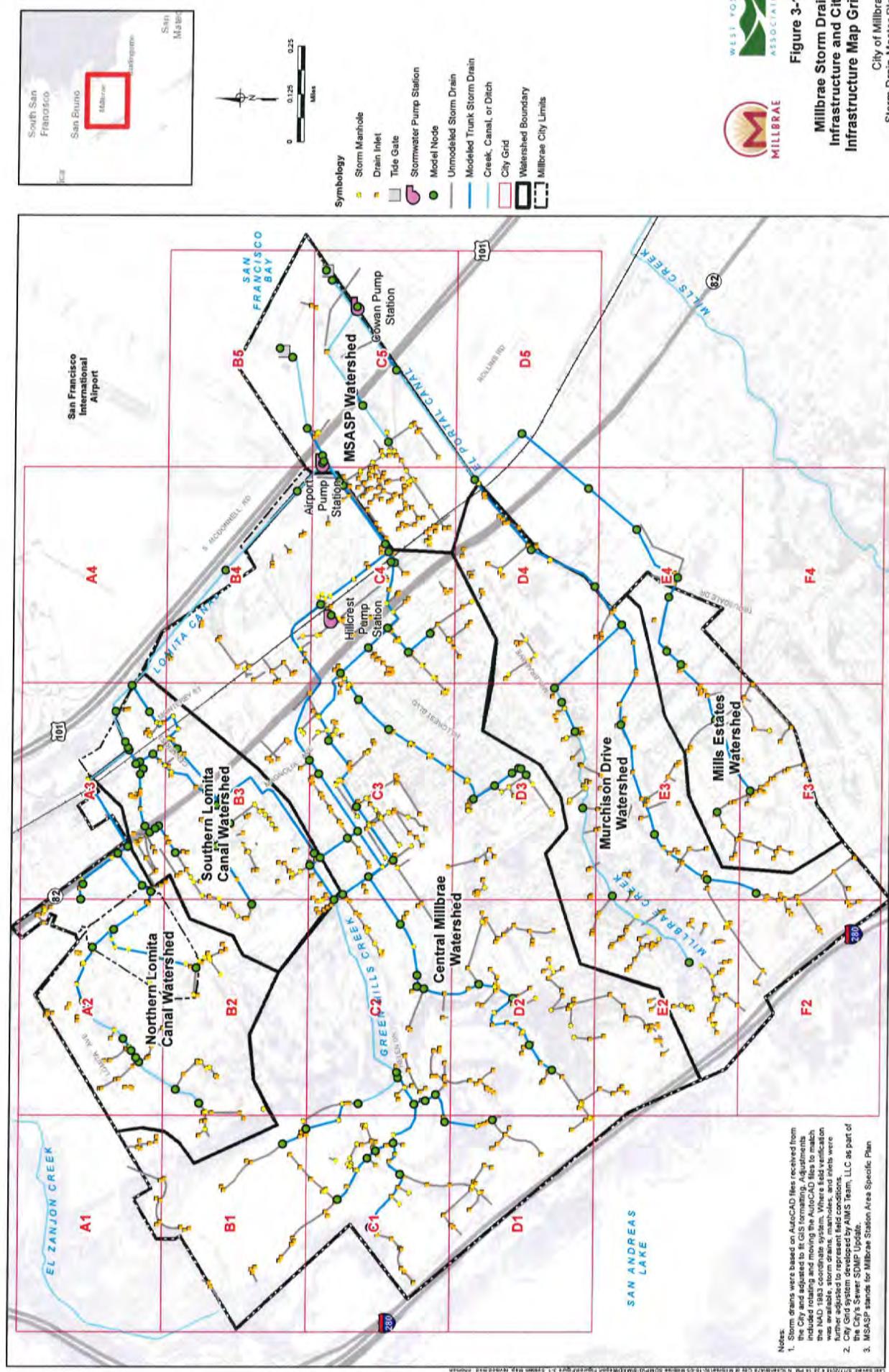
- Invert Elevation
- Grate Elevation

Pipes and Culverts

- Upstream node name, based on node naming convention
- Downstream node name, based on node naming convention
- Upstream invert elevation
- Downstream invert elevation
- Type (pipe, box culvert, etc)
- Size (diameter or measurements)

Channel Segments

- Upstream node name
- Downstream node name
- Upstream invert elevation
- Downstream invert elevation
- Bottom width, if applicable
- Manning's n value


Not all links, diameters, and invert elevations could be field verified and thus, assumptions were made where necessary to characterize the system in the XPSMM model, including:

- Determining open channel cross sections from LiDAR
- Defining inlet inverts from the LiDAR ground elevation minus a standard value
- Interpolating inlet inverts from adjacent known invert elevations
- Inferring pipe diameters from adjacent pipe diameters

Such assumed information is noted in the GIS database.

3.3 GIS DATABASE

Information collected for the trunk drainage system is detailed in the new GIS database prepared as a part of this planning effort, and as shown in the mapbook provided as Appendix A. For the purposes of producing a complete system map, updated data is displayed with the City's existing AutoCAD mapping to create a single file. However, areas of the system that were not field verified as a part of the SDMP development may reflect legacy mapping issues, including links that do not join to adjacent nodes, do not include pipe size data, isolated sub-systems that may or may not connect to the larger drainage network, and outdated information. As the City continues to maintain and assess the system, updates can be incorporated and managed in the GIS database to improve system knowledge.

Figure 3-1
Millbrae Storm Drain Infrastructure and City Infrastructure Map Grid
 City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

This chapter summarizes and reviews storm drain system performance criteria and design criteria used by various local municipalities and agencies. These criteria were used to develop the performance criteria used to evaluate the existing system in this SDMP as well as the design criteria used to size the new storm drain facilities recommended in this SDMP, both of which are presented at the end of this chapter.

4.1 SUMMARY AND REVIEW OF CITY OF MILLBRAE DESIGN CRITERIA

This City's drainage design criteria are provided in the City of Millbrae, Department of Public Works Engineering Division, Part II Technical Provisions for Public Works Construction (March 2005), Section 6 Storm Drainage Systems. These criteria are primarily for the evaluation of drainage systems in support of land development projects. The criteria relevant to this SDMP are summarized below:

- Post development peak flows and velocities shall be less than or equal to the predevelopment peak flows and velocities. Mitigation (for increased flows) can include on-site detention basins or downstream conveyance improvements.
- For projects within a floodplain or bounding an existing drainage course, the design storm shall be a 100-year event. For most other projects, a 10-year design storm recurrence interval may be used.
- Peak flows can be determined using the rational method ($Q = CIAF$) or other methods. The variable F is defined as the intensity factor and is set at 1.1.
- Rainfall intensities (I) are provided for the 10-year and 100-year design storms for durations of 10 minutes to 24 hours.
- Runoff coefficients (C) are provided for several land uses.
- All storm drainage facilities shall have sufficient capacity for the anticipated peak flows.

4.2 SUMMARY AND REVIEW OF RELEVANT SAN MATEO COUNTY DESIGN CRITERIA

San Mateo County's drainage criteria match the City's criteria very closely, as summarized below:

- Post development peak flows and velocities shall be less than or equal to the predevelopment peak flows and velocities in areas where there are no existing downstream storm drain systems and no additional runoff may cross property lines. Where downstream storm drain systems exist, they must be sized to accept the increased runoff, or mitigation measures must be taken. Mitigation measures may include on-site detention, including dry wells, or off-site storm drain improvements.
- For projects within a floodplain or bounding an existing drainage course, the design storm shall be a 100-year event.
- Peak flows can be determined using the rational method ($Q = CIA$) or other methods.

- Permanent structures built over existing drainage facilities or drainage courses shall allow sufficient capacity to protect existing and proposed development. Access shall be provided for maintenance, and redundancy should be provided in case the primary system fails.
- Drainage systems that rely on pumps are not allowed.

4.3 SUMMARY AND REVIEW OF RELEVANT SANTA CLARA COUNTY DESIGN CRITERIA

Drainage criteria for Santa Clara County are provided in the County's Drainage Manual of 2007 and are summarized below:

- Ten-year runoff shall be contained by a storm drain system consisting of underground pipe and/or stable open channels. New storm sewers and channels shall be designed to safely convey the 10-year storm without surcharge. Existing storm drain facilities may be used to convey flow, as long as one foot of freeboard is provided for the ten-year design flow.
- A safe release shall be provided for the design 100-year flow. Within urbanized areas, the 100-year discharge may be carried by a combination of a storm drain system and surface flow on the street, as long as the hydraulic grade line is contained within street rights-of-way.
- Where necessary, detention storage may be implemented to ensure the above criteria are met.
- The 24-hour design storm rainfall is provided for various areas throughout the County.
- Improvements to facilities that are part of a FEMA Flood Insurance Study must be designed to contain the FEMA 100-year water surface elevation using FEMA criteria. The rational method may be used for small drainage areas (less than or equal to 200 acres where storage effects are not significant, or less than 50 acres with detention and storage). C values are specified in the Drainage Manual.
- The unit hydrograph method shall be used for areas over 200 acres, or for more complex situations.

4.4 SUMMARY AND REVIEW OF RELEVANT CITY OF VACAVILLE DRAINAGE DESIGN CRITERIA

The City of Vacaville drainage design standards are specified in the City of Vacaville Standard Specifications, adopted September 11, 1990, with Revisions through June 23, 2015, and summarized below:

- Calculation Methods – The hydrologic design shall be based on the methodologies in the Solano County Water Agency Hydrology Manual, except as modified by the City of Vacaville's standards. Areas less than 200 acres can be evaluated using the rational method or a hydrograph method. Areas greater than 200 acres, areas with pumping, areas with detention basins shall be evaluated with a hydrograph method.

- Storm Drainage Conveyance Systems – A 10-year storm shall be used for design of piped systems with the Hydraulic Grade Line (HGL) to remain at least 1.0 feet below the gutter flow line. For storm drains discharging to creeks, the 10-year creek water elevation shall be used as the starting water level for hydraulic evaluations. The minimum pipe size is 15 inches.
- Streets – Streets shall be designed to provide an overland release of runoff for the 100-year flow assuming the underground storm drain is plugged, all upstream areas are fully developed, and that antecedent rainfall has saturated the tributary watershed. 100-year flows shall be safely routed through or around new development to an acceptable downstream drainage facility, while maintaining 1.0 feet vertical clearance to building pads and shall not be higher than 0.5 feet above the roadway centerline elevation.
- Detention Basins – All detention facilities shall be designed for the 100-year, 24-hour storm event. Detention basin facilities shall maintain a minimum freeboard of 2 feet above the emergency spillway. The emergency spillway shall be located six inches above the 100-year water surface elevation in the detention basin.
- Ditches (capacity less than or equal to 25 cubic feet per second (cfs)) – Typically, ditches are only allowed as a temporary facility. Permanent ditches shall be sized for a 100-year storm with at least 0.5 feet of freeboard. Ditches shall not be more than 3 feet deep.
- Open Channels (capacity greater than 25 cfs) – Channels shall be sized for a 100-year storm with at least 1.0 feet of freeboard. Channels with levees are not allowed.
- Pump Stations – Currently no pump station criteria are provided, but the City of Vacaville is considering adding pump station design criteria.

4.5 SUMMARY AND REVIEW OF RELEVANT VALLEJO SANITATION AND FLOOD CONTROL DISTRICT

The Vallejo Sanitation and Flood Control District drainage design standards are identified in the Vallejo Sanitation and Flood Control District, Solano County, California, Engineering Design Standards and Policies, dated May 2002.

- Level of Protection – For tributary areas less than 640 acres, the level of protection shall be based on the 15-year storm. For areas greater than 640 acres, the level of protection shall be based on the 100-year storm.
- Runoff Calculation Methods – For tributary areas less than 200 acres, the rational method shall be used. For tributary areas greater than 200 acres a unit hydrograph method shall be used. Drainage facilities shall be sized for the ultimate development of all upstream tributary areas.

- Storm Drain Systems – For the design of all pipeline conveyance facilities, the HGL shall be maintained at a minimum of two feet below the inlet grates and maintenance hole covers. The minimum size of storm drains shall be 15 inches. The minimum design velocity shall be 2.5 feet per second. The maximum design velocity shall be 10 feet per second.
- Street Flow – Although streets are primarily for vehicle traffic, the street sections shall be designed to convey or store floodwater from storms greater than the storm drain capacity.
- Detention Basins – Detention basins may be used to reduce the downstream storm drain costs and problems. However, no detention basin design criteria are provided.

4.6 SUMMARY AND REVIEW OF RELEVANT CITY OF DIXON DRAINAGE DESIGN CRITERIA

The City of Dixon storm drain design criteria are defined in the *City of Dixon Engineering Standards and Specifications*, dated April 2007, and include:

- Storm Drain Conveyance Systems – All pipeline conveyance facilities shall be designed to maintain the HGL at a minimum of one foot below the gutter flow line of all drain inlets during a 10-year, 24-hour storm event.
- Street Flow – Storm drainage systems for new development shall be designed to convey the 10-year storm. During a 100-year storm event, flow greater than the capacity of the pipe system shall be conveyed or detained in the street section while maintaining a water surface at least 1 foot below the adjacent building pad elevations.
- Open channels – If allowed by the City Engineer, open channels shall be designed to convey the 100-year peak flow with a freeboard of 1 foot if the design water level is below the adjacent ground surface and with 3 feet of freeboard if the design water surface is above the adjacent ground (for levees).
- Detention Basins – A 100-year, 4-day storm shall be used for sizing major detention storage facilities. Minimum freeboard during the 100-year storm shall be 1 foot if the design water level is below the surrounding ground surface, and 3 feet if the design water level is above the surrounding ground surface (for embankments). The release rate from detention basin must be authorized by the City Engineer on a case-by-case basis.

4.7 SUMMARY OF RECOMMENDED PERFORMANCE AND DESIGN CRITERIA TO BE USED IN THIS STORM DRAIN MASTER PLAN

Both performance criteria and design criteria are recommended for use in this SDMP. Performance criteria are used to evaluate existing storm drain facilities. If the performance criteria are not met, then storm drain improvements will be developed to mitigate the deficiencies. If storm drain improvements are needed, the improvements should be sized to achieve the design criteria, to the extent possible. The performance criteria used to evaluate existing facilities are less stringent than the criteria used to design new facilities. The reason for using different criteria for the existing system and for proposed improvements is to preclude potential identification of many millions of dollars of storm drain improvements to solve very minor storm drain issues that only occur once every 10 years to 50 years and do not cause property damage.

4.7.1 Recommended Performance Criteria

The following performance criteria should be used to evaluate existing storm drain facilities, and were used to assess the system performance, as discussed in Chapter 5:

- **Storm Drain Systems** – Existing storm drain systems shall convey the peak 10-year, 24-hour storm flow with a depth less than 6-inches above drain inlets (representing overland flow containment within the street at a curb height of 6-inches).
- **Street Flow** – During a 100-year storm event, for new developments, flow greater than the capacity of the pipe system shall be conveyed or detained in the street section while maintaining a water surface at least 6-inches below the adjacent building pad elevations. During a 100-year storm event, flood hazard (the product of depth and velocity) shall be no greater than 6.0.
- **Open Channels** – Open channels shall convey the 100-year peak flow with a freeboard of 0.5 feet if the design water level is below the adjacent ground surface and with 2.0 feet of freeboard if the design water surface is above the adjacent ground (for levees).
- **Tide Level** – For the 10-year model evaluations, a 10-year tide level of 9.06 feet NAVD88 shall be used as the tailwater level in the Bay. For the 100-year model evaluations, a 100-year tide level of 10.28 feet NAVD88 shall be used as the tailwater level in the Bay. These water levels are consistent with the 10-year and 100-year extreme tide levels in the Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore, Final Report, May 2016 (see Chapter 2).

4.7.2 Recommended Design Criteria

The following design criteria should be used to size new storm drain facilities, and were used to design system improvements, as discussed in Chapter 6:

- **Storm Drain Systems** – New storm drains shall be sized so that the peak 10-year, 24-hour storm event water levels are at least one foot below the storm drain inlet grate elevations.
- **Street Flow** – During a 100-year storm event, for new developments, flow greater than the capacity of the pipe system shall be conveyed or detained in the street section while maintaining a water surface at least 1.0 feet below the adjacent building pad elevations. For improvements to existing systems, during a 100-year storm event, flood hazard (the product of depth and velocity) shall be no greater than 6.0.
- **Open Channels** – If allowed by the City Engineer, new open channels shall be designed to convey the 100-year peak flow with a freeboard of 1 foot if the design water level is below the adjacent ground surface and with 3 feet of freeboard if the design water surface is above the adjacent ground (for levees).

- Detention Basins – If allowed by the City Engineer, a 100-year, 4-day storm shall be used for sizing major detention storage facilities. Minimum freeboard during the 100-year storm shall be 1 foot if the design water level is below the surrounding ground surface, and 3 feet if the design water level is above the surrounding ground surface (for levees). The release rate from detention basin must be authorized by the City Engineer on a case-by-case basis.
- Tide Levels – For the design of new facilities, the future 10-year and 100-year tide levels of 9.97 and 11.20 feet NAVD88 shall be used as the tailwater level in the Bay. These tide levels are 11 inches higher than current extreme tide levels. The increase of 11 inches is consistent with the most likely 2050 increase in extreme tides in the Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore, Final Report, May 2016 (see Chapter 2).
- Green Infrastructure – An effort shall be made during the design of storm drainage improvements to incorporate green infrastructure components.

This chapter describes the development of an integrated hydrologic and hydraulic model using XPSWMM software version 2017.2.1 by Innovyze. Major components of the model include the hydrologic runoff layer and the hydraulics layer. The data and assumptions that were used in creating each layer of the modeling are discussed within this chapter, and the model results are compared to the performance criteria in Chapter 2 in order to identify the locations for system improvements, presented in Chapter 6.

5.1 HYDROLOGIC MODEL DEVELOPMENT AND RESULTS

Hydrologic modeling reflects the precipitation and terrain that, together, drive runoff flow rates and volumes that must be routed through the City's stormdrain system. This section outlines the inputs and assumptions made in the hydrologic modeling of the City.

5.1.1 Climate

As described in the City's *Administrative Review Draft General Plan Update* (unpublished), average temperatures in Millbrae range from a daily average low of 42°F in December and January to an average daily high temperature of about 72°F in August and September. Average annual rainfall totals 20 inches at the Airport to about 40 inches per year at San Andreas Lake. Most of the rainfall occurs between October and May. January is typically the wettest month, with an average rainfall of almost 4.5 inches. July is typically the driest month, with an average rainfall of only 0.03 inches.

Because the annual rainfall for Millbrae ranges so widely between the higher and lower elevations, the 10-year and 100-year design storm should also vary across the City. West Yost developed a range of design storms for the City based on an adjustment of the 10-year, 24-hour and 100-year, 24-hour intensity distributions outlined in the City's *Technical Provisions* (Millbrae, 2005) and presented in Table 5-1.

Table 5-1. Intensity, Duration and Frequency of Rainfall in Millbrae (Millbrae, 2005)

Time of Concentration, Hrs:Mins	Intensity, Inches per Hour 10-Year	Intensity, Inches per Hour 100-Year
0:10	2.45	3.60
0:15	2.05	3.00
0:20	1.73	2.55
0:25	1.50	2.22
0:30	1.33	1.95
0:35	1.20	1.75
0:40	1.10	1.61
0:45	1.02	1.49
0:50	0.95	1.37
0:55	0.90	1.28
1:00	0.86	1.21
1:15	0.75	1.07
1:30	0.67	0.95
1:45	0.61	0.87
2:00	0.56	0.80
2:30	0.49	0.70
3:00	0.44	0.63
3:30	0.40	0.57
4:00	0.37	0.53
4:30	0.34	0.49
5:00	0.32	0.45
6:00	0.29	0.41
7:00	0.26	0.38
8:00	0.24	0.35
9:00	0.23	0.33
10:00	0.21	0.30
12:00	0.19	0.27
24:00	0.13	0.18

The distributions from the *Technical Provisions* were converted to hyetographs that represented each rainfall event at an average elevation. As indicated in the regional isopluvials shown in *NOAA Atlas 14, Volume 6* (NOAA, 2011) and an analysis of point-precipitation frequency data, rainfall intensity is approximately 5 percent higher in the upper elevations of the City and 5 percent lower along the shoreline, as compared to the central elevation zone. Elevations within the City range from 620 feet above Mean Sea Level on the City's western boundary to 5 feet below Mean Sea Level near San Francisco Bay. Based on this information, West Yost developed an elevation-based distribution, with "moderate" rainfall intensity in the central elevations, and a five percent shift in the "high" and "low" elevations of the City, as shown on Figure 5-1. The corresponding 10-year, 24-hour and 100-year, 24-hour rainfall depths for each isopluvial are provided in Table 5-2.

Table 5-2. Spatial Distribution of Rainfall Intensity Across Millbrae, based on Elevation

Duration	10-year Rainfall Depth, inches			100-year Rainfall Depth, inches		
	Low	Moderate	High	Low	Moderate	High
5 min	0.19	0.20	0.21	0.29	0.30	0.32
10 min	0.39	0.41	0.43	0.57	0.60	0.63
15 min	0.49	0.51	0.54	0.71	0.75	0.79
30 min	0.63	0.67	0.70	0.93	0.98	1.02
1 hr	0.82	0.86	0.90	1.15	1.21	1.27
2 hr	1.06	1.12	1.18	1.52	1.60	1.68
3 hr	1.25	1.32	1.39	1.80	1.89	1.98
6 hr	1.65	1.74	1.83	2.34	2.46	2.58
12 hr	2.17	2.28	2.39	3.08	3.24	3.40
1 day	2.96	3.12	3.28	4.10	4.32	4.54

The spatial distribution of rainfall was used to set the total rainfall depth for each catchment in the XPSWMM model. Rainfall depths by catchment are identified in Appendix B.

5.1.2 Watersheds

As shown on Figure 3-1, the City's stormwater generally drains east/southeast out of the hills into the flatter regions of the City and, ultimately, out to the Bay south of the Airport. The major watersheds are described below, and include:

- Northern Lomita Canal Watershed (225 acres) - This watershed drains the northern part of the City through a piped storm drain system (42-inch to 48-inch diameter) into Lomita Creek and the Lomita Canal. The runoff from this watershed is lifted by the Airport Pump Station into the Highline Canal east of the BART tracks.
- Southern Lomita Canal Watershed (164 acres) - This watershed drains through a piped storm drain system, which in turn flows into the Lomita Creek, which in turn flows into the Lomita Canal at the Landing Lane Bowl. The runoff from this watershed is lifted by the Airport Pump Station into the Highline Canal east of the BART tracks.
- Central Millbrae Watershed - (942 acres) - This watershed drains through several storm drainage systems to the Highline Canal. Water from the Bay is prevented from entering the Highline Canal by twin box culverts (near South McDonnell Road), each 15 feet wide by 15 feet tall, each with a large flap gate. Flap gates allow water to flow from the City to the Bay, but prevent back flow from the Bay to the City. However, these flap gates sometimes do not close completely because mud accumulates below the gates and prevents the gates from sealing closed. This watershed also includes the Hillcrest Pump Station, which lifts water from the Hillcrest Drive undercrossing under the BART tracks.

- MSASP Watershed (67 acres) – This watershed drains through a piped storm drain system to the open channels in the US-101 interchange and then flows into a storm drain to the Cowan Pump Station.
- Murchison Drive Watershed (393 acres) - This watershed drains through series of storm drains and Millbrae Creek to the El Portal Canal. The El Portal Canal drains to the Bay. Water from the Bay is blocked from entering the El Portal Canal by twin 84-inch diameter culverts (under the Old Bayshore Highway), each with a flap gate.
- Mills Estates Watershed (130 acres) – This watershed drains through a 45-inch storm drain into a City of Burlingame storm drain system, which returns with additional collected flows to the upstream end of the El Portal Canal.

5.1.3 Catchments

Establishment of the hydrologic modeling layer of XPSWMM includes not only the determination of the regional rainfall and drainage sheds based on topography and drainage system layout, but also individual catchment geometry, abstraction, infiltration, and runoff rate. A number of catchments were identified within each watershed. Generally, catchments were delineated for each node in the drainage network where a major junction or link geometry change occurs. The following model parameters were developed to define each catchment:

- Catchment Area
- Catchment Width
- Soil Type
- Imperviousness
- Slope

The area of each catchment was computed in GIS. The determination of width, soil, land use and slope are further discussed in the following sections. The resulting hydrologic input data for catchments is presented in Appendix B and further discussed in the sections below.

5.1.3.1 Catchment Width

Calibration of the XP-SWMM Runoff Method is difficult. The XP-SWMM manual provides guidance for most of the input variables, and most of the variables can be defined with easily defined physical values. However, the watershed width is a very difficult parameter to estimate using the guidance in the manual unless the watershed is rectangular, with a well-defined channel flowing down the center of the watershed, such as an urban residential block with houses on each side of the street. The street is then considered the channel. Most watersheds do not fit this ideal configuration. Thus, other methods of estimating the watershed width are needed, and the watershed width value often becomes the primary runoff calibration variable.

West Yost has developed an equation for calculating the initial watershed width for the 10-year storm, based on extensive experience calibrating XPSWMM modeling. This equation was used to estimate the watershed width for Millbrae catchments, as follows:

$$\text{Initial watershed width (feet)} = 155 * (\text{Area (in acres)} ^ 0.64)$$

5.1.3.2 Catchment Hydrologic Soil Group

Catchment hydrologic soil group influences the amount of runoff retained by the soil, and thus, influences the amount of runoff to be modeled. The hydrologic soil groups are poorly defined in this area, but the majority of soil types delineated by the US Department of Agriculture's Natural Resources Conservation Service (NRCS) Soil Web Survey reflect hydrologic soil group C. hydrologic soil group C was therefore used for catchments with undefined soil types.

5.1.3.3 Catchment Land Use & Imperviousness

Much of the City is developed, with parks, schools, and steep hillsides representing much of the pervious area. Impervious surfaces prevent runoff from infiltrating into the soil, and thus generate more runoff. The impervious percentage of each catchment was correlated to the land uses from the City's General Plan update (Mintier & Harnish, 2016) shown on Figure 5-2 and verified with aerial imagery.

5.1.3.4 Catchment Slope

The slope of each catchment influences how rapidly runoff moves through the watershed. The slope values were based on the LiDAR data provided by the City and County of San Francisco's Airport Authority. The difference in elevation from the upstream end of the catchment to the downstream end, divided by the distance between the two points was computed within XPSWMM.

5.1.3.5 Rainfall Losses and Infiltration

Rainfall losses represent the loss or "initial abstraction" caused by such phenomena as surface ponding, surface wetting, interception and evaporation. For the storm drain master plan, initial losses for pervious portions of the watershed were globally computed in XPSWMM, using the Horton method, which reflects the idea that infiltration capacity rapidly declines during the early part of a storm and then tends towards an approximately constant value after a couple of hours for the remainder of the event.

Depression storage values for all catchments of 0.1 inch and 0.35 inches were assumed for impervious and pervious areas, respectively. Not all impervious areas provide depression storage, however. It was estimated that 25 percent of the City's impervious area provided direct connection to runoff. For hydrologic soil group C, the maximum and minimum infiltration rates were assumed to be 1.42 inches per hour and 0.14 inches per hour, respectively, in accordance with the National Engineering Handbook (NRCS, 2007).

5.1.3.6 Manning's Roughness Coefficients for Catchments

The Manning's roughness for catchment pervious and impervious areas are used to represent the overland or sheet flow that occurs before runoff enters a defined channel. Values for Manning's roughness coefficients vary greatly for different land surface types for overland flow, but average values of 0.014 and 0.35 were used for Millbrae's impervious and pervious areas, respectively, in accordance with the XPSWMM manual (XPSWMM, 2013).

5.2 HYDROLOGIC MODEL CALIBRATION AND RESULTS

5.2.1 Hydrologic Model Calibration

This section presents the calibration of computed runoff for several different land uses and catchment sizes using the City's Rational Method. As outlined in the City's Technical Provisions for Public Works Construction (Millbrae, 2005), a peak runoff was computed for various catchment types. The Rational Method Evaluation is described by the following relationship:

$$Q = C i A F$$

where:

- C* is a runoff coefficient for the catchment from the Technical Provisions, presented below in Table 5-3 for relevant land uses.
- i* is the rainfall intensity in inches/hour as specified in the Technical Provisions based on each catchment's time of concentration
- A* is the catchment area in acres, and
- F* is the intensity factor of 1.1, as specified in the Technical Provisions

Table 5-3. Rational Method Runoff Coefficients (Millbrae, 2005)

Type of Development	Runoff Coefficient
Parks & Cemeteries	0.30
Residential - Acres	0.40
Residential - Regular	0.50
Commercial	0.75
Paved Areas	0.85

Chapter 5

Model Development and Existing Conditions Evaluations

The runoff unit flows computed with the rational method were compared to the runoff unit flows computed for the same sheds with the XPSWMM model. The differences were minimized by adjusting the watershed widths used in the model, as this value is one of the most variable, particularly in a system like Millbrae's where catchments varied widely in shape and size. The initial watershed width was reduced by 30 percent to achieve the calibration, as shown in Table 5-4. Further adjustment of this variable resulted in an overcorrection of unit flow and thus, a total error or 0.33 cfs/acre over the subject catchments was deemed acceptable.

Table 5-4. Calibration of the Watershed Width in XPSWMM to Match Millbrae's Rational Method Runoff Computation

Catchment Identifier	Catchment Land Use	Catchment Area, acres	Isohyetal Zone	Rational Method		XPSWMM Method		Unit Flow Difference, cfs/acre
				Runoff, cfs	Unit Flow, cfs/acre	Runoff, cfs	Unit Flow, cfs/acre	
87	Open Space/Residential	47.52	Low	75.27	1.58	76.00	1.60	0.02
50	Residential	20.67	Low	40.93	1.98	41.00	1.98	0.00
51	Residential/Commercial	23.41	Low	69.53	2.97	59.00	2.52	-0.45
105	Open Space/Residential	26.34	Central	41.72	1.58	54.00	2.05	0.47
92	Residential	28.95	Central	57.32	1.98	60.00	2.07	0.09
100	Commercial	22.46	Central	47.25	2.10	57.00	2.54	0.43
104	Open Space	31.86	High	37.85	1.19	19.00	0.60	-0.59
85	Residential	27.40	High	54.25	1.98	64.00	2.34	0.36
								Total 0.33

5.2.2 Hydrologic Model Results

This section presents a summary of XPSWMM hydrologic model results for existing conditions for each catchment in the Millbrae Watershed, along with hydrologic outputs including peak runoff rates and peak unit runoff rates under existing conditions. Results for individual catchments are presented in Appendix B. Peak flows during the 10-year, and 100-year, 24-hour events for each watershed are approximately as indicated in Table 5-5.

It has been noted by City staff that flows in the upper reaches of the Central Millbrae watershed may be increasing in the near future as the storm drain system is disconnected from the sewer system in the vicinity of Helen Drive, Tioga Drive and Ridgewood Drive. The City expects approximately 110,000 gallons per day during a 10-year, 24-hour event to enter the storm drainage system. However, the additional amount of expected runoff (0.17 cfs) represents a very small percentage of total runoff and therefore flows were not adjusted to reflect the change.

Table 5-5. Peak Runoff by Watershed for the 10-year and 100-year Events

Watershed Name	Most Downstream Link(s)	10-year, 24-hour peak flow, cfs	100-year, 24-hour peak flow, cfs
Northern Lomita Creek	NMA303-NOA301	81.8	107.3
Southern Lomita Creek	NDA303-NOA302	63.4	104.3
Central Millbrae	CJA301-NOA303	122.1	126.0
	MOC401-NIC501	589.4	841.1
	CJC401-MPC503	25.3	47.8
	Central Millbrae Total	736.8	1,014.9
Murchison Drive	UDD402-UMD401	331.1	456.0
Mills Estate	EOD501-UMD401	309.1	497.5
MSASP	MMC501-MIC501	75.9	124.5

5.3 HYDRAULIC MODEL DEVELOPMENT

A hydraulic model of the City's trunk drainage system was developed in XPSWMM version 2017.2.1 by Innovyze. This modeling software was selected based on its broad application to stormwater master planning, its stability in modeling one-dimensional systems, and its integration between hydrologic and hydraulic datasets. This section presents the hydraulic model, including geometric and hydraulic inputs and assumptions.

5.3.1 Geometry

The storm drain network was defined in the hydraulic model as a limited subset of all drainage serving the City. To identify improvements to the drainage system that would have the greatest impact to flood risk in the City, and to optimize return on investment in system improvements, model geometry was generally limited to storm drains greater than 18-inches in diameter. Where possible, the City's CAD file was used as a reference to set pipe sizes, although there were numerous locations where field investigations or new development required an update to the system. The storm drain network is shown on Figure 3-1.

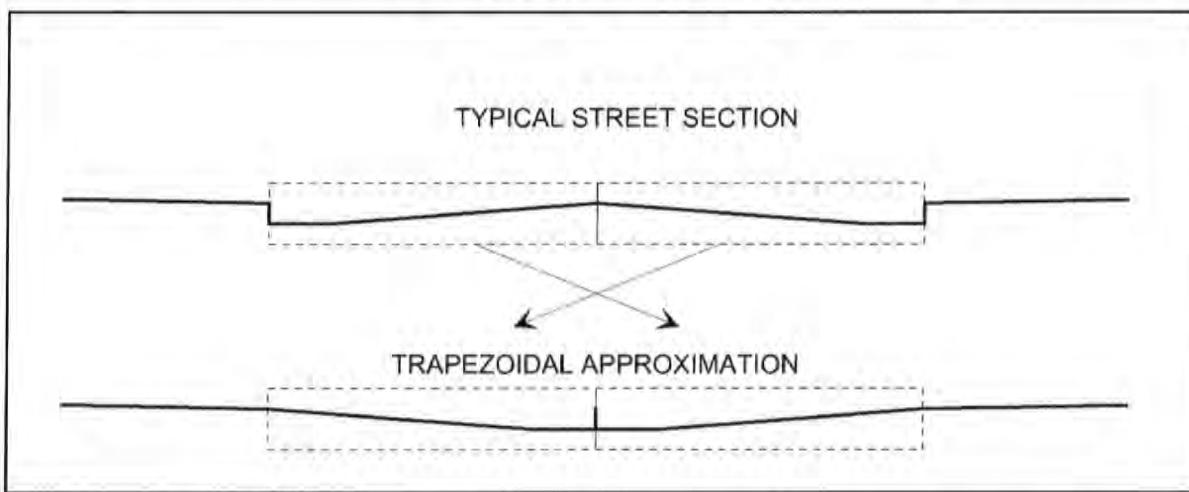
5.3.1.1 Node Invert Assumptions

In some cases, it was not possible to verify node inverts during field investigations. This occurred where manholes were blocked or no manhole access was available in sealed lines. For the nodes where it was not possible to verify the invert, the invert was either estimated based on interpolation or extrapolation from nearby nodes or based an assumed depth, coupled with available LiDAR and aerial imagery.

5.3.1.2 Culvert and Bridge Crossings

Bridge and culvert crossings were not surveyed during the field investigations. Inverts upstream and downstream of each crossing were interpolated from surrounding information, or assumed where none was available (such as at outfall locations). Opening sizes were also assumed, based

on photography or available records. Bridges were modeled as culverts, due to limitations in the model. Contraction and expansion coefficients were set at 0.3 and 0.1, respectively, unless the configuration warranted a change.


5.3.1.3 Open Channel Cross Sections

For creeks and other naturally shaped channels, XPSWMM was used to cut representative cross sections from the LiDAR data. Trapezoidal channels were added to the model using data from the City or aerial imagery and LiDAR. Channel roughness was estimated from the degree of vegetation present in the main channel and overbanks, as discussed in Section 5.3.2.1.

5.3.1.4 Street Section Assumptions

Where the storm drain system capacity was exceeded, streets were modeled to convey excess flow from the surcharge location to downstream inlets with capacity to direct flow back into the system. The cross sections of each street were created to match the width of the street, with a curb depth of 6-inches. As indicated on Figure 5-3, a typical street section with a roadway crown can be visualized, and was modeled, as an equivalent trapezoidal section.

**Figure 5-3. Transforming a Typical Street Section to a Trapezoidal Approximation
(City of Sacramento, 1996)**

In order to add flow in the street, the ground elevation at the upstream and downstream nodes had to be artificially raised to contain that flow. The artificially modified ground elevations were removed during model post-processing to obtain the true depth of flooding in street sections.

5.3.1.5 Overland Flow Sections

There are numerous locations where any drainage system surcharges would not be conveyed in a street. Principally, this situation arises when streets run perpendicular to the natural elevation changes within the City and there is no nearby perpendicular street to draw the flow downhill. In these instances, flow would likely be conveyed through a park or a neighborhood. Cross sections were created in the model to represent these broad, shallow flow paths to a downstream inlet with

Chapter 5

Model Development and Existing Conditions Evaluations

capacity, where flow could return to the system. These sections were set up with varying trapezoidal channel sizes to represent the potential capacity of each location.

5.3.2 Hydraulic Model Inputs

This section describes the information supplied to the hydraulic model to define the hydraulic performance of the storm drain system, including the roughness of materials and channels, pump station performance, boundary conditions, and locations where flow entered the system from outside the City.

5.3.2.1 Manning's N Values for Pipe Materials and Channels

Video tapes from a storm drain system inspection were reviewed during a previous Storm Drain Master Planning effort (KJ, 1998). Some pitting was observed on the interior of the storm drain pipelines at that time. For this SDMP, it was assumed that the condition of the pipelines has not significantly changed, and therefore the same roughness factor of $n = 0.014$ was used in the XPSWMM model for pipelines.

Open channels were mainly observed to be densely vegetated, with the exception of the channel through the golf course at Green Hills Country Club, in the Central Millbrae Watershed. As indicated in Appendix C, open channel roughness was set to range from 0.035 over the less vegetated portions to 0.050 through densely vegetated sections of the channels.

5.3.2.2 Pump Station Data

The City has three pump stations: Hillcrest, Airport, and Cowan, as discussed in Chapter 2. Sufficient data was available to model most pumps as dynamic, but pump curves were not obtained for the Airport side of the Airport pump station, where static pumping was used to reflect the maximum capacity of each pump. Pump station inputs to the hydraulic model are indicated in Table 5-6.

Table 5-6. Hydraulic Model Existing Condition Pump Station Input Data

Pump Station	Pump Number	Model Link ID	Pump Start Elevation, feet NAVD88	Pump Stop Elevation, feet NAVD88	Ground Elevation, feet NAVD88	Invert Elevation, feet NAVD88	Wet Well Area, feet ²
Hillcrest	1	CPC401-CMC406	8.5	6	15	-15	115
	2		8.5	6			
Airport - SFO	1	MPC501-NIC501	-10	-12.5	11	-18	1,400
	2		-9	-12.5			
Airport - Millbrae	1	MOC503-NIC501	-3.25	-13.25	11	-18	700
Cowan	1	MPC502-NOC502	-5.35	-7.25	5.5	-11.75	707
	2		-5.05	-7.25			
	3		-4.25	-7.25			

5.3.2.3 Boundary Conditions

Model results are driven by the ability of runoff to escape the system at the tide gates on the Bay. To represent the time-varying tidal conditions for different events, a synthetic tide was created for both a 10-year and 100-year event. For the existing conditions 10-year model evaluations, a 10-year tide level of 9.06 feet NAVD88 was used as the tailwater level in the Bay. For the existing conditions 100-year model evaluations, a 100-year tide level of 10.28 feet NAVD88 was used as the tailwater level in the Bay.

For the design of improvements, the future 10-year and 100-year tide levels of 9.97 and 11.20 feet NAVD88 were used as the tailwater level in the Bay. These tide levels are 11 inches higher than current extreme tide levels. The 10-year and 100-year tide levels and the increase of 11 inches are consistent with the current information and most likely 2050 increase in extreme tides in the Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore, Final Report, May 2016 (see Chapter 2).

5.3.2.4 External Flow Assumptions

There are several areas outside the model for which no data on drainage was available. A watershed within the southern portion of the City of San Bruno drains to the Lomita Canal at the northeastern corner of the City of Millbrae's boundary, eventually discharging to the Highline Canal via the Airport Pump Station. The flow for this shed, was estimated based on the shed area indicated by GHD in San Bruno's recent *Storm Drain Master Plan Update* (GHD, 2014). The shed area of 151.5 acres resulted in a 196.5 cfs peak flow for the 10-year event and 320.8 cfs peak flow for the 100-year event, input just downstream of Landing Lane Bowl.

In addition, an area of the northern portion of the City of Burlingame, to the south of the City of Millbrae, drains to the El Portal Canal, via the Cowan Pump Station. The maintenance spending on Cowan Pump Station is proportionate to the areas of Burlingame and Millbrae served by the pump station, according to City staff. Therefore, a flow split of 60 percent to 40 percent, respectively, was assumed in the modeling, resulting in a peak flow of 66.3 cfs for the 10-year event and 109.4 cfs in the 100-year event from the City of Burlingame.

5.4 HYDRAULIC MODEL RESULTS AND VERIFICATION

For the 10-year, 24-hour event, flooding was predicted by the model at nearly all the locations noted by the City to have experienced flooding during previous significant storm events. An exception occurred at the Millbrae Station Specific Plan watershed outfall near the 101 Freeway interchange, where City staff indicated backups have occurred in the past due drain inlets being blocked by debris, rather than hydraulic underperformance of the system. Such debris is not accounted for in the hydraulic modeling. A second location near the intersection of Ashton and Hillcrest was indicated to be a problem where a single residence was constructed below street elevation. It is possible that nuisance flooding will persist at this location, even with system improvements, due to overland flows, as sites below drainage inlet elevations cannot discharge into the system without ponding.

For the 100-year, 24-hour event, excessive flood hazards were present in many modeled streets. It is important to note that the hydraulic modeling performed was one-dimensional, and did not allow lateral spreading of surcharge flows. Therefore, in situations where topography is relatively flat,

and flooding would likely spread throughout a network of connected streets, the flood hazard modeling is conservative. In areas with steep topography, flow is unlikely to seek an alternate path and excessive flood hazards should be considered a risk to pedestrians. In addition, there were many locations during the 100-year event where open channels lacked sufficient freeboard.

Appendix D presents the results of the hydraulic model of the existing system for the 10-year and 100-year events.

5.5 COMPLIANCE WITH PERFORMANCE CRITERIA

The results of the hydraulic modeling were compared with the performance criteria outlined in Chapter 4. Violations of the performance criteria are discussed in relation to the model results in the subsections below. The main criterion that was used to evaluate the storm drain collection system was its ability to convey runoff without excessive flooding (i.e. pipelines were allowed to surcharge, but flow was not allowed to overtop an assumed curb height of 6-inches) during the 10-year, 24-hour event. Flooding during the 100-year, 24-hour event was also assessed for both flood hazard (depth times velocity) and open channel freeboard. Locations where the depth and freeboard performance criteria were violated during the 10-year event are shown on Figure 5-4. Locations where the freeboard, and flood hazard criteria were violated during the 100-year event are shown on Figure 5-5.

5.5.1 Northern Lomita Creek Watershed

The Northern Lomita Creek Watershed is the northern-most drainage basin in the City. The system serves the residential areas west of Capuchino High School and the high school itself. The area drains into the Lomita Canal via a 48-inch storm drain line where the San Felipe Canal flows into the Lomita Canal south of Santa Helena Avenue in Millbrae. In the upper reaches of the watershed, runoff is conveyed by an open channel that runs through the neighborhood from Meadow Glen School to just west of Cypress Avenue, where it enters a 42-inch storm drain. The 42-inch storm drain transitions to a 30-inch line and heads south, crossing Capuchino High School where it receives additional flow from a 24-inch line that drains part of Barcelona Drive and the High School. The 24-inch line and the 30-inch line are connected by a 2-foot by 4-foot box culvert. The main 42-inch line turns east at Capuchino Drive where it becomes a 48-inch pipe. The 48-inch storm drain line is joined by a 24-inch line at El Camino Real, and jogs down San Juan Avenue to discharge into the Lomita Canal.

As shown on Figure 5-4, there were two locations with surcharging during the 10-year event, but no surcharges exceeded performance criteria in the Northern Lomita Creek Watershed.

Although there is some street flooding expected in this watershed during the 100-year, 24-hour event, flood hazards are expected to be below the threshold of concern, as shown on Figure 5-5. Much of the overflow from surcharged storm drains is expected to be stored in the fields at Capuchino High School.

5.5.2 Southern Lomita Creek Watershed

The Southern Lomita Creek Watershed begins in the west at Green Hills Country Club, where a portion of the drainage of the Central Millbrae Watershed discharges into a flow split between the 42-inch line that enters the Southern Lomita Creek Watershed and the 48-inch line that continues

through Central Millbrae. The 42-inch line is sealed for most of its length down to the discharge on Lomita Canal at Spruce Street, but receives drainage from the south side of Green Hills Elementary School near Laurel Avenue at Helen Drive. Drainage from the neighborhood north and west of Green Hills Elementary School splits, with a 27-inch line draining to the south end of Landing Lane Bowl via Ludeman Lane, while the remainder flows north, becoming a 42-inch line that empties to the north end of Landing Lane Bowl. The watershed discharges to Lomita Canal at Spruce Street and Landing Lane Bowl.

As shown on Figure 5-4, flood depths during the 10-year, 24-hour event in this watershed were generally acceptable, with the exception of the area around Landing Lane Bowl, where there were several nodes with surcharging in excess of 6-inches. Although high water levels in Lomita Canal contribute to the poor drainage of this area, hydraulic constrictions are also present. Three 24-inch trash capture devices were recently placed in the Landing Lane Bowl. Modeling indicates that the weir that ensures low flows pass through the trash capture devices prior to exiting the Bowl increase water surface elevations above the elevation of the weir (estimated at 4-feet NAVD88 by San Francisco Airport staff), particularly as the capture devices collect trash and convey less flow. Airport staff have noted that, in certain instances of reported Landing Lane flooding, the Lomita Canal was not surcharged, suggesting that the increased flood hazard identified by the model may be present under a variety of conditions. In addition, the channel just upstream of Landing Lane Bowl appears to present a constriction that causes upstream backwater. Space is limited in this area to make improvements. It is recommended that the City consider alternatives to enhance conveyance at this location. One option is to install additional capture devices to increase hydraulic conveyance through the weir and Landing Lane Bowl. Given the total flow area out of Landing Lane Bowl is nearly 76 square feet, provided by 6 48-inch culverts, it would be appropriate to match this conveyance through the weir and trash collection system in a high flow event. In addition, the City should ensure trash removal at regular intervals, particularly prior to rain events.

Street flooding is expected in this watershed during the 100-year, 24-hour event, around Landing Lane Bowl, which therefore has insufficient freeboard, as shown on Figure 5-5. In addition, street flooding in excess of the performance criteria may be present along Magnolia Avenue in the vicinity of Green Hills Park. Since the flood hazard at this location is driven by excessive depth, it is likely that surcharges would escape the right-of-way toward the Marymount Greenhills Retirement Center under the existing condition.

5.5.3 Central Millbrae Watershed

The Central Millbrae Watershed provides drainage for nearly 50 percent of the total area of the City from its northwest corner east, to the head of Highline Canal, just west of the BART tracks. The shed covers an area as far south as Hillcrest Boulevard at its western edge and is drained by three major sub-systems.

A series of lines west of the Greenhills Country Club flow across the Country Club in an open channel and re-enter the storm drain system at the split between the 42-inch line that enters South Lomita Creek Watershed and the 48-inch line that turns south toward Anita Drive. This line takes on flow from the northern portion of the watershed at several locations and increases to a 60-inch line at Laurel Avenue.

It is joined near El Camino Real by a 48-inch line that drains everything from Richmond Drive in the north to Taylor Boulevard in the south and westward to the City limits. This line crosses the tracks at Hermosa Avenue and collects drainage from the Hillcrest Pump Station before discharging just east of the BART tracks.

The third major sub-system runs down Taylor Boulevard, ultimately in a 39-inch line that joins a large box culvert near Broadway, which has its outfall at the upstream end of the Highline Canal, just west of the BART tracks.

As shown on Figure 5-4, this watershed is expected to experience significant areas of surcharging during the 10-year, 24-hour event. In the upper watershed, surcharging is driven by high runoff on steep slopes, often at transitions to more gradual slopes. Further down, the trunk system is generally under-sized to maintain flows within the existing storm drain lines. Surcharges in excess of 6-inches in depth were identified along the line that runs west to east south of the Greenhills Country Club in the vicinity of Richmond Drive, in the area around the Hillcrest pump station, and at the crossing of the BART tracks, where an existing 18-inch line presents a constriction in flow.

There are five locations where depth may exceed 0.5 feet during the 10-year, 24-hour event. Two lie along the line connecting Tioga Drive to Geraldine Drive, where both significant inflows and downstream surcharging are exacerbated by the change in slope. A second location is at the intersection of Library Avenue and Magnolia Avenue, where the surcharge depth is expected to just exceed the performance criteria.

Model results suggest that during large storm events, there may also be localized flooding at the Hillcrest undercrossing of the BART tracks. Although the Hillcrest Pump Station has two pumps, City staff have indicated that they are not able to run at the same time, but instead provide redundancy in case of failure or maintenance. However, inflows to the pump station may exceed the capacity of a single pump. The City should consider re-operating the pump station to allow both pumps to operate simultaneously. This may necessitate a second 18-inch discharge line under the BART tracks.

The City has indicated that there is an 18-inch line under the BART tracks connecting Hemlock to the 33-inch line under the canal. This could not be verified during field inspections, but has been modeled according to the City's information. This location represents a hydraulic pinch point between two larger-diameter lines, and may cause flooding in the area upstream of the tracks. The depth of flooding is unclear, as a floodplain mapping was not performed during the modeling. It is recommended that the City verify the size of this line and upgrade it.

During the 100-year event there is significant and wide spread street flooding through the Central Millbrae Watershed, as shown on Figure 5-5. There are also numerous locations where the hazard to pedestrians may be a concern. Locations of flood hazard concern in the Central Millbrae Watershed include the following:

- In the upper watershed, from Helen Drive to Greenhills Country Club, flood hazards are greater than 6.0 with street velocities as high as 10.6 feet per second.

- Flood hazards above 6.0 were also present in Taylor Boulevard from the limit of the modeling at Ashton Avenue all the way to Broadway, with street velocities as high as 7.5 feet per second.
- Flood hazards in excess of 6.0 are also present along the length of Tioga Drive, emptying into the neighborhood between Anita Drive and Helen Drive with street velocities as high as 14 feet per second in this steep area.

In areas where street flood hazard is noted in the lower elevations, there are more opportunities for flow to spread over multiple streets. While modeling was performed along one alignment for each instance of 100-year surcharge, overall depths could be lower during an actual event. Areas where flood hazard were observed, but further analysis with two-dimensional modeling should be considered to better characterize the extent and the risk include:

- In the neighborhood along Anita Drive, including Helen Drive,
- Along the Anita Drive, Michael Lane, Richmond Drive alignments all the way down to Broadway,
- Along La Cruz Avenue from Magnolia Avenue to Broadway,
- Along Broadway from La Cruz Avenue to Hillcrest Boulevard.

In addition, open channels, including those at Greenhills Country Club and Highline Canal have insufficient freeboard, as shown on Figure 5-5. Should a 100-year, 24-hour event occur at the same time as a 100-year high tide, as modeled, Highline Canal would be expected to overtop in locations where the canal banks are lower than the tide elevation of 10.28 feet NAVD88. This situation would be exacerbated in a situation where sea level rise to 11.2 feet NAVD88 is considered, but the likelihood of the two events occurring at the same time is low and the results are advisory, rather than guaranteed.

5.5.4 Murchison Drive Watershed

This watershed contains two major sub-sheds. The Murchison Drive sub-watershed collects flows from southwestern Millbrae via a series of storm drains that increase in size toward El Portal Canal. It is joined by flows from the Mills Estate Watershed re-entering Millbrae from the City of Burlingame at the head of the El Portal Canal, just east of the tracks.

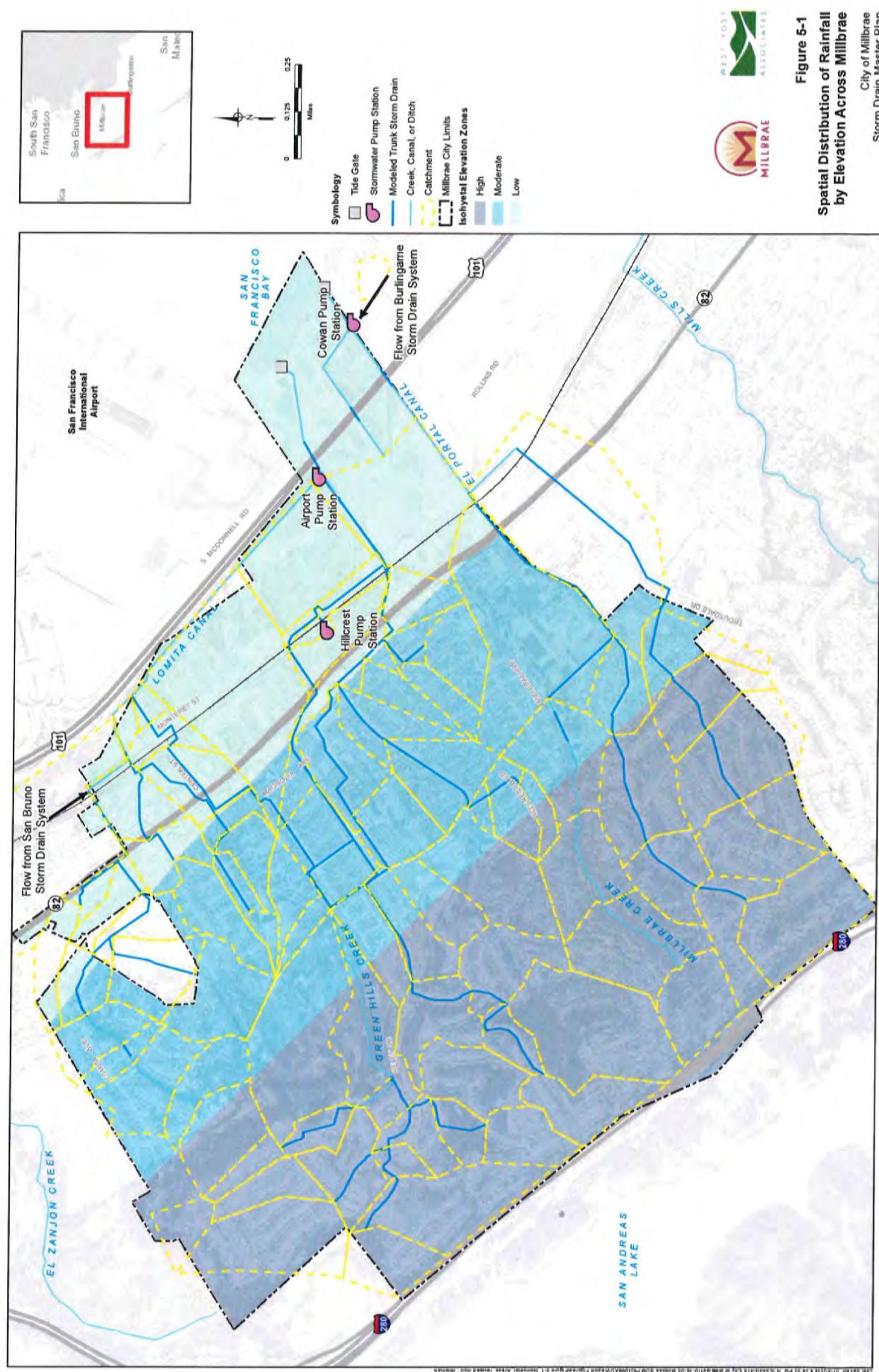
Millbrae Creek is the primary drainage for the upper portion of the Murchison Drive Watershed, collecting flows from the western edge of the City to Ashton Avenue. At this point, the channel enters a 48-inch culvert to cross Ashton Avenue. The culvert changes to an irregularly sized box culvert that continues under a series of structures paralleling Millbrae Avenue, reducing in cross sectional area until it daylighted across the Avenue from Laurel Avenue in a natural channel section, with a small, rectangular low flow channel. This section conveys flow to a 24-inch storm drain near the northwestern corner of Mills High School that conveys flow south to the 54-inch line in Murchison Drive near Sequoia Avenue.

The Murchison Drive watershed storm system is expected to perform fairly well in a 10-year, 24-hour storm event, with minor surcharging below 6-inches in depth along Murchison Drive, due to the large areas that enter the storm drain system at the top of the shed.

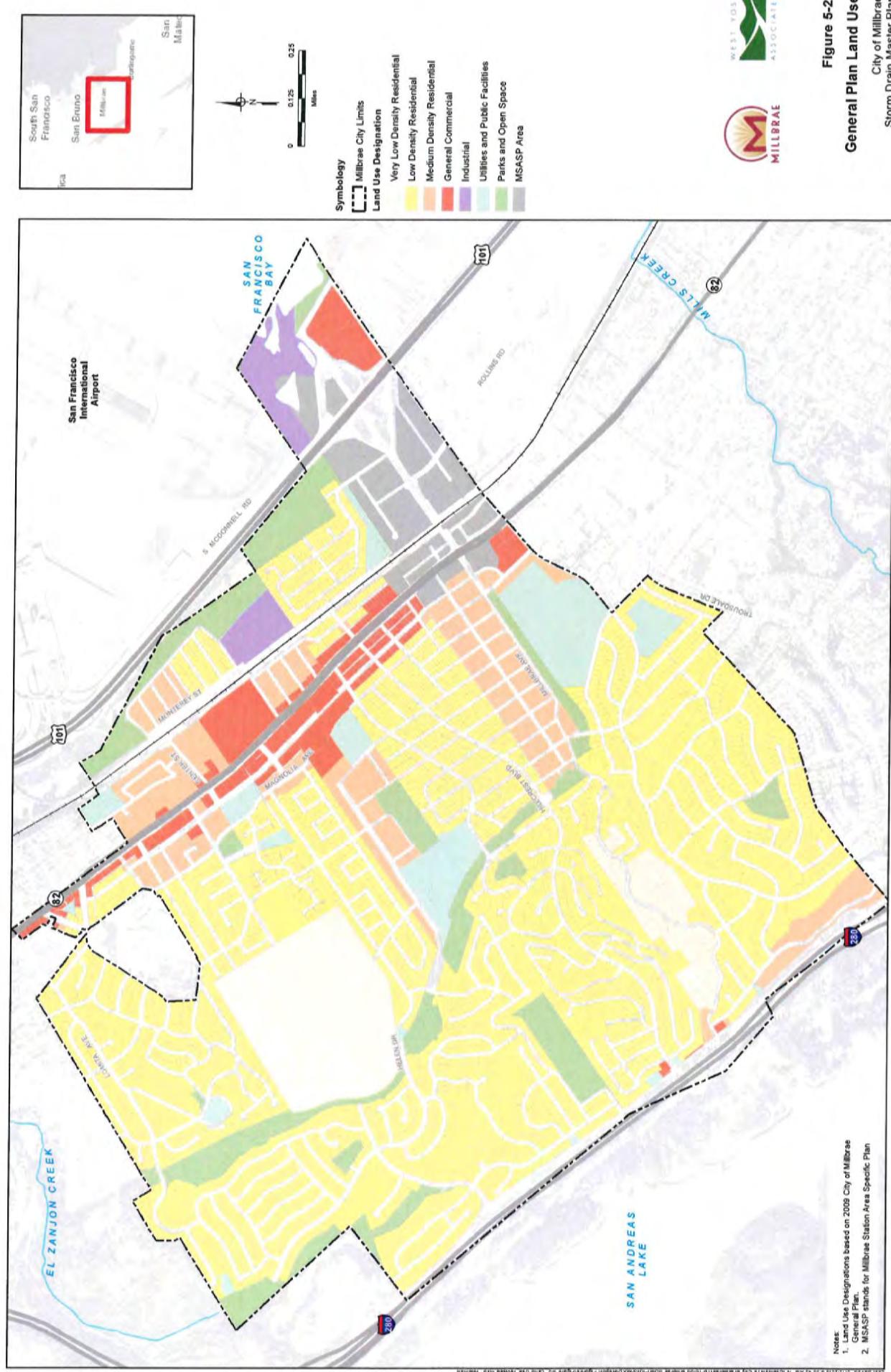
Street flooding is expected along Murchison Drive during the 100-year, 24-hour event, where the street gradient is likely to encourage flows to follow the right-of-way, exposing pedestrians to potentially high velocities, as shown on Figure 5-5. The flood hazard exceeds the performance criteria of 6.0, with street velocities as high as 13.5 feet per second in this steep portion of the watershed, if flow does not find alternate paths. However, Mills Creek appears to have sufficient freeboard during the 100-year 24-hour event.

5.5.5 Millbrae Station Area Specific Plan Watershed

The flow in the Millbrae Station Area drains southeast to the corner of Camino Millenium and Aviador Avenue, where flow turns south in a 30-inch line that crosses Millbrae Avenue near the Highway 101 Freeway interchange. Flow crosses the interchange eastward as an open ditch, with culvert crossings at roadways, and then south through a system of culverts underneath the Aloft Hotel property into the Cowan pump station. The Cowan pump station discharges into the El Portal Canal.

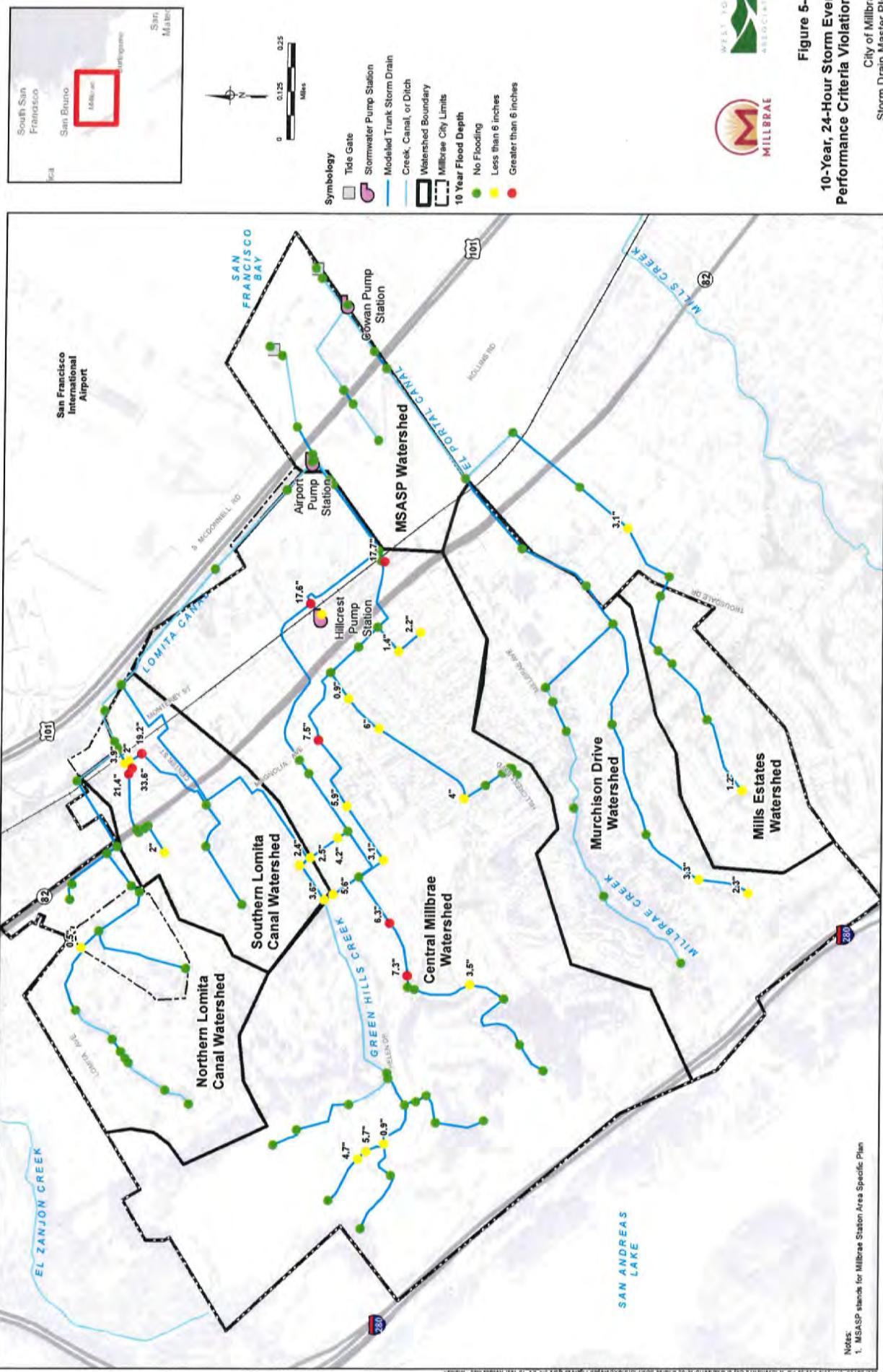

The Millbrae Station Area drainage system consists mainly of smaller-diameter pipes that were not modeled. However, there is no indication of any surcharging in the watershed during the 10-year, 24-hour storm event, or any street flooding during the 100-year event. However, the shed is bordered by both the Highline Canal and the El Portal Canal, which have insufficient freeboard in a 100-year event and may be subject to overtopping in the event of sea level rise.

5.5.6 Mills Estates Watershed


This watershed drains the southwestern corner of the City through a 45-inch line in Trousdale Boulevard that passes through the City of Burlingame, collecting a limited amount of drainage from Burlingame and rejoining the Millbrae system as an open channel just east of the BART tracks that empties into the upstream end of the El Portal Canal.

While the surcharging during the 10-year, 24-hour event is less than 6-inches in depth, as shown on Figure 5-4, there may be significant flood hazard during the 100-year event due to the steep gradient of the watershed, which causes high velocities, as shown on Figure 5-5.

In the lower portion of Mills Estates Watershed, as runoff enters the City of Burlingame, street flooding exceeding performance criteria is expected during the 100-year event along Trousdale Boulevard from approximately South Ashton Avenue to Magnolia Avenue, with velocities as high as 9.3 feet per second. Data received from the City of Burlingame was incomplete along the portion of the alignment along Trousdale, and it was assumed that the transition between pipe diameters was located at the farthest upstream end of the missing data. Flood hazard modeling also indicated a high hazard potential through the neighborhood around Spring Valley Elementary School, but it is likely that flooding would be dispersed over multiple paths and broad, shallow sheet flow is more likely. Further analysis with two-dimensional modeling should be considered to better characterize the extent of the flood hazard.



(THIS PAGE LEFT BLANK INTENTIONALLY)

Figure 5-2
General Plan Land Use

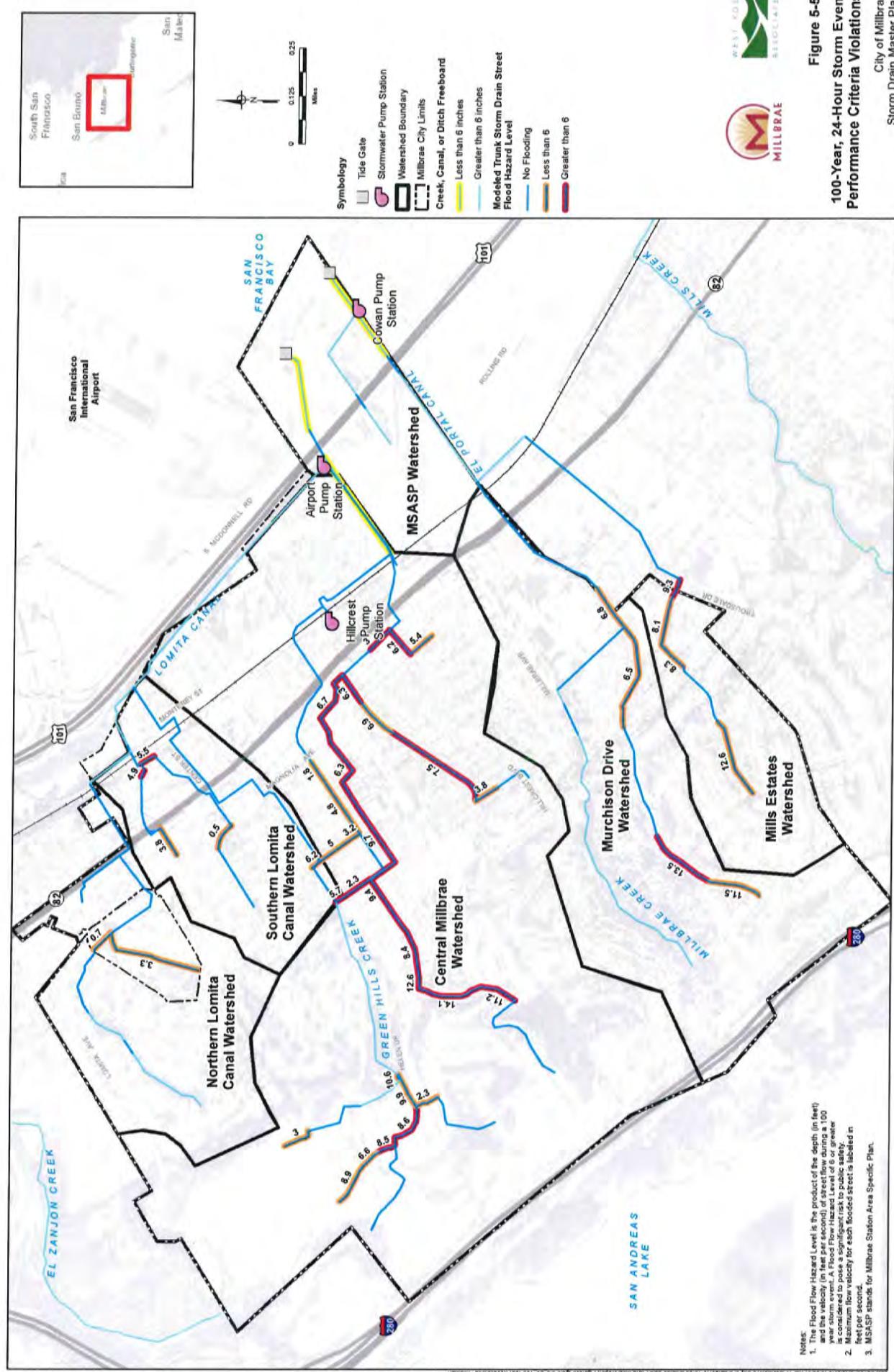

(THIS PAGE LEFT BLANK INTENTIONALLY)

Figure 5-4
10-Year, 24-Hour Storm Event Performance Criteria Violations

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

(THIS PAGE LEFT BLANK INTENTIONALLY)

This chapter of the SDMP presents the recommended improvements to mitigate the system deficiencies identified by the combined hydrologic and hydraulic model, as well as additional recommendations identified through review of previous studies, field investigation, and discussion with City staff.

6.1 CITY WIDE MODEL RESULTS WITH RECOMMENDED IMPROVEMENTS

Based on the results of West Yost's hydraulic modeling of the City's stormwater collection system, performance criteria were violated during both the 10-year, 24-hour and 100-year, 24-hour events. The 10-year event was modeled to evaluate the depth of flow at each model node, and the 100-year event was modeled to assess the capacity of open channels, as well as the depth and velocity of street flooding, which contribute to the flood hazard, as discussed in Chapter 4.

While it appears that much of the backbone system has sufficient capacity to convey stormwater from the 10-year, 24-hour design storm event, there are areas that are predicted to surcharge and locations that fail to meet the performance criteria. In the past, the City has observed several locations of nuisance flooding during larger storm events, as noted in Chapter 1. During the 10-year event, the modeling does predict surcharging at most of these locations, as discussed in Chapter 5. A second location near the intersection of Ashton and Hillcrest was indicated to be a problem where a single residence was constructed below street elevation. It is possible that nuisance flooding will persist at this location, due to overland flows, as sites below drainage inlets cannot discharge into the system.

Recommended improvements for the modeled pipelines that were predicted to surcharge above the curb height during the 10-year, 24-hour event are identified in Table 6-1. These improvements are also shown on Figure 6-1. Although there are a number of locations with minor surcharging, only 8 locations exceeded the depth performance criteria identified in Chapter 4. It should be noted that two segments of Capital Improvement Project (CIP) 5.1, 5.2 and 5.6 not only allow the improvement to meet the 10-year, 24-hour design criteria for surcharging, but also reduce critical flood hazards in the 100-year, 24-hour event.

The City's storm drain system was not designed for a 100-year, 24-hour storm. Therefore, during the 100-year event, significant street flow is expected throughout the City. Recommended improvements where model surcharging resulted in a violation of the depth performance criteria are noted in Table 6-1 as being designed to a "10-year standard", while flood hazards greater than 6.0 required improvements to be designed to a "100-year standard", as noted in Table 6-1. "Tier 1 Improvements" and "Tier 2 Improvements" identify CIPs where the flood hazard risk is more significant, while "Tier 3 Improvements" identifies CIPs where it is likely that any flooding would disperse over multiple flow paths, thus reducing the true risk. These CIPs should be further investigated to determine whether the benefits would be worth the investment. Based on City recommendations, CIPs with a combined cost estimate less than \$2 million (M) were given the highest priority for implementation. Although components of some "Tier 2 Improvements" are well below this threshold, the desired outcomes will not be achieved by partially completing a CIP and the costs for all segments should be considered the cost of the CIP.

Table 6-1. Recommended Improvements

CIP ID	Link ID	Location Summary		Diameter, inches		Design Criteria	Cost Estimate, Dollars
		Existing	Proposed				
Tier 1 Improvements							
CIP 1	SOA301-NDA303	Landing Lane Bowl	Triple 24	Remove	10-year standard	\$ 50,000	
CIP 3	CDC402-CJC401	Inlet to line under Highline Canal	18	30	10-year standard	\$ 399,000	
CIP 6	CMC312-CMD301	Taylor Middle School Drainage	-	24	City proposed (10-year standard)	\$ 1,146,000	
CIP 7.1	CMD203-CDC204	Tioga Drive	30	36	100-year standard	\$ 1,330,000	
CIP 7.2	CDC204-CDC207	Tioga Drive	30	36	100-year standard	\$ 166,000	
CIP 7.3	CDC207-CMC204	Tioga Drive to Anita Lane	30	36	100-year standard	\$ 255,000	
					Tier 1 Improvements Subtotal	\$ 3,346,000	
Tier 2 Improvements							
CIP 2.1	CPC401-CMC406	Hillcrest Pump Station (PS)	Alternating	Two Together	10-year standard	\$ 10,000	
CIP 2.2	CPC401-CMC406	Hillcrest PS Discharge	12	Double 12	10-year standard	\$ 116,000	
CIP 2.3	CMC406-CMC404	Hillcrest PS to Highline Canal	66	Double 66	10-year standard	\$ 4,043,000	
CIP 4	MMC501-MP-C502	Relocate inlet to Cowan PS	-	Double 48	City proposed (10-year standard)	\$ 9,082,000	
CIP 5.1/7.4	CMC204-CDC208	Tioga Drive to Geraldine Drive	36	48	100-year standard	\$ 1,706,000	
CIP 5.2/7.5	CDC208-CMC306	Geraldine Drive to Lincoln Circle	36	48	100-year standard	\$ 2,587,000	
CIP 5.3	CMC306-CMC309	Richmond Drive	42	48	10-year standard	\$ 1,984,000	
CIP 5.4	CMC309-CMC302	Richmond Drive	42	54	10-year standard	\$ 2,823,000	
CIP 5.5	CMC302-CMC304	Magnolia Avenue to Taylor Boulevard	-	Double 48	10-year standard	\$ 3,236,000	
CIP 5.6/10.2	CMC304-CMC401	Taylor Boulevard	39	Triple 39	100-year standard	\$ 1,570,000	
CIP 8.1	CMC102-CMC104	Helen Drive	30	36	100-year standard	\$ 450,000	
CIP 8.2	CMC104-CMC221	Helen Drive	42	48	100-year standard	\$ 1,573,000	
CIP 8.3	CMC201-CDC205	Helen Drive	42	48	100-year standard	\$ 1,107,000	
					Tier 2 Improvements Subtotal	\$ 30,287,000	
Tier 3 Improvements							
CIP 9	SDB302-SDB303	Magnolia Avenue to Broadway	18	24	100-year standard	\$ 344,000	
CIP 10.5	CMC403-CMC407	Behind Broadway to Highline Canal	(2) 48 x 68 Box	Add (2) Parallel 48	100-year standard	\$ 3,222,000	
CIP 10.4	CDC401-CMC403	Behind Broadway to Highline Canal	(2) 48 x 68 Box	Add (2) Parallel 49	100-year standard	\$ 1,669,000	
CIP 10.3	CMC401-CDC401	Behind Broadway to Highline Canal	(2) 48 x 68 Box	Add (2) Parallel 50	100-year standard	\$ 2,299,000	
CIP 10.1	CMC303-CMC304	Taylor Boulevard	36	42	100-year standard	\$ 1,140,000	
					Tier 3 Improvements Subtotal	\$ 8,674,000	
					Total	\$ 42,307,000	

In addition, there were violations of the freeboard performance criteria along many of the City's open channels, including at Landing Lane, Highline Canal and El Portal Canal. Much of the open channel performance is driven by tidal conditions in the Bay. With a high tide of just over 9 feet represented in the existing conditions model, and canal heights around 9 feet, these channels have very little additional capacity to convey flood flows. Even if improvements are made to the storm drain system, freeboard is expected to decrease when considering sea level rise, as modeled in the improvement designs. The lack of freeboard cannot be addressed by improving system capacity alone, and should instead be managed with improved isolation of the City from the Bay, coupled with either 1) enhanced pumping in the future or 2) increases in canal embankment height at an appropriate time in the future.

Many of the improvements described in the sections below are recommended to address potential flooding in areas that do not have a history of recurring flooding. This might be because the model's computation of localized depth at each surcharged node does not represent lateral spread that would occur during an actual flooding event. The same is true for many instances of flood hazard exceeding performance criteria. Typical street flow will select a broader flow area than a single street. However, the point depths and street velocities, as modeled, represent an important indicator of potential issues and hazards.

6.1.1 General Recommendations

In addition to the modeled results, there are several improvements to the storm drain system that have been identified based on the findings of previous studies where improvements have not yet been implemented, based on changing conditions, or based on common practice. The locations of these improvements are shown on Figure 6-1, but designs and cost estimates have not been prepared to address these issues.

West Yost conducted a series of site visits to photograph and document important facilities, as well as to verify the City's storm drainage network configuration and obtain invert elevations at model nodes. For a number of locations where West Yost could not access the drainage system to perform measurements, City staff provided follow up information to clarify needed data. However, not all locations could be accessed, even by the City, and the site visits focused on the trunk system. Therefore, additional verification and measurements should be performed in the future to complete the update of the City's existing storm drain system map.

During field investigations, a number of maintenance issues were identified that suggest a routine CCTV inspections program should be implemented to avoid underperformance during storm events. Collapsed pipes, blockages, sedimentation, and trash are concerns and increased routine inspections will help identify such issues before they become a problem. There are several areas of the City's system where access is not available, and the City should consider uncovering or adding manholes in the following locations:

- The 42-inch line draining from Green Hills Creek to Lomita Canal is sealed for its entire length. As the line is surcharged in significant storm events, it is important that it remain sealed to prevent flood waters from escaping. However, with no access for maintenance or inspection, it may be appropriate to install one or more sealed manholes that can be unbolted for inspection purposes.

- The 15-inch line under Magnolia Avenue between Ludeman Lane and Green Hills Drive that drains to Center Street has a sealed manhole. As the line is surcharged in significant storm events, it is important that it remain sealed to prevent flood waters from escaping. However, with no access for maintenance or inspection, it may be appropriate to uncover the existing sealed manhole for inspection and maintenance purposes.
- In the back yard of 15 Evergreen Court, there is a manhole that has been recently covered by a deck, constructed by the resident. This manhole provides access to a junction in the system and should be uncovered for future maintenance and inspection.
- The 33-inch line under Highline Canal has been sealed. Historically, the Canal was leaking into the line and causing the system to underperform. However, a sealed manhole could be considered for access and maintenance.

City staff have indicated that flooding has occurred in the past in the Aviador Area, particularly when there has been a failure at the Airport Lift Station. At the present time, the Airport Lift Station relies on a single 125 horsepower pump. Based on discussions with City staff, the existing Airport Lift Station would require modifications to the wet well and a separate discharge pipeline to accommodate a second pump. This recommendation is noted on Figure 6-1 as general recommendation (GR) 1.

The existing flap gates at the outlet of Highline Canal do not close completely and, during high tide events in the San Francisco Bay, allow water from the Bay to enter the Highline Canal. This raises the water level in the canal and reduces system storage. Considering the potential for sea level rise to an elevation of 11.20 feet NAVD88 by 2050, as suggested by the Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore, Final Report, May 2016 (see Chapter 2), without repair, the Highline Canal would be overtapped even without high runoff. It is important to note that modeling of improvements assumed the tide gate at this location was repaired. Failure to repair this problem will impact the ability of other improvements to function as designed. This recommendation is noted on Figure 6-1 as GR2.

In anticipation of future sea level rise, the City may wish to consider increasing the height of the Highline Canal and El Portal Canal embankments, which, due to differential settlement since construction, vary in height with elevations as low as 9 feet. These protective levees could be overtapped during high flow, high tide events, even without sea level rise. In addition, canal seepage during high flows is a concern, having been observed along the Highline Canal, and should be addressed with lining repair, a cutoff wall, or other measures. This recommendation is noted on Figure 6-1 as GR3.

The City has indicated that there is a history of flooding in the vicinity of Landing Lane. A significant component of this problem may be an excess of vegetation built up in the Lomita Canal that has been driven by difficulty in Airport maintenance crews obtaining permits to use equipment in the channel, where endangered species are present at times. Excess vegetation may cause a backwater condition in the upper portion of Lomita Canal that impairs drainage of the City at the Landing Lane Bowl. However, the City has recently installed a trash capture device in the Landing Lane Bowl that may also create a hydraulic impact at lower flows. Improvements were modeled

in Landing Lane Bowl and are discussed in Section 6.3. This recommendation is noted on Figure 6-1 as GR4.

**GR4 Is Recommended to Address Known Issue Number 1 – Flooding of
Landing Lane Area**

During field inspections, City staff performed a confined-space entry of the culvert where Mills Creek crosses Ashton Avenue. This culvert passes under several structures in a combination of circular, concrete box, and mixed concrete/corrugated metal construction and was found to be failing, which could endanger the structures above it. Although this location was not found to cause a hydraulic constriction, it is recommended for immediate repair and replacement, as the change in alignment and shape have caused significant scour, which is anticipated to further degrade in subsequent storm events. This recommendation is noted on Figure 6-1 as GR5.

The City has also noted that the lines in Taylor Boulevard and Center Street are subject to sedimentation that necessitates periodic sediment removal. The sedimentation was not modeled, and could represent a significant impact to system performance, if not cleaned regularly, particularly prior to the start of flood season. This recommendation is noted on Figure 6-1 as GR6.

6.1.2 Capital Improvement Projects

A suite of ten capital improvement projects were modeled in accordance with the design criteria in Chapter 4. The final configurations shown on Figure 6-1 meet the 10-year and 100-year design criteria, as shown on Figures 6-2 and 6-3, respectively, with the exception of the freeboard criteria in the 100-year, 24-hour event for open channels. As discussed, future sea level rise prevents the freeboard criteria from being met in any configuration of the storm drain system without increases in channel height.

6.1.2.1 Capital Improvement Project One

Improvements are needed at the Landing Lane Bowl to increase hydraulic capacity, as discussed in Chapter Five, and shown on Figure 6-1 as CIP 1. The recommended improvements include removing and the trash capture devices and the low flow weir to maximize conveyance through Landing Lane Bowl under the tracks. It may be necessary to identify an alternate design or location for trash capture in the future. This improvement will reduce backup in the systems that drain to the Bowl, but should be coupled with vegetation removal in Lomita Canal to achieve optimum results. It is assumed that vegetation control will be managed by the San Francisco Airport maintenance staff.

**CIP1 Is Recommended to Address Known Issue Number 1 – Flooding of
Landing Lane Area**

6.1.2.2 Capital Improvement Project Two

This project includes two components: reoperation of the Hillcrest Pump Station to make use of both pumps during high flow storm events (CIP 2.1), and adding a discharge line that crosses the tracks and upgrading the downstream conveyance to Highline Canal by adding a second, parallel 66-inch line on the east side of the BART tracks to accommodate the additional pump discharge (CIP 2.2). The 66-inch line also alleviates existing performance issues upstream. Since both pumps are already in place, the bulk of the cost of this improvement is in the additional discharge and new large-diameter line. The City may also wish to consider a third pump as back-up for large storm events, but this would require extensive re-design of the pump station and is not included in the cost estimates at this time.

6.1.2.3 Capital Improvement Project Three

This project increases the conveyance under the BART tracks at the head of the 33-inch line under the Highline Canal that leads to the Airport Pump Station. This location is currently a hydraulic constriction, according to available drawings that indicate the line is 18-inches in diameter. In the improvements modeling, the size of the line was increased to 2.5-feet to achieve the design criteria. This was recommended, as opposed to a second, parallel line, as the additional width needed to install a line parallel could create the potential for additional utility conflicts.

6.1.2.4 Capital Improvement Project Four

The drainage channel connecting the Millbrae Station Area Specific Plan Watershed to Cowan Pump Station runs through the southern portion of the Highway 101 Interchange, from west to east. The channel, and its culverts crossing the Highway, have historically been difficult to maintain, and the City would like to relocate the alignment outside the Caltrans right-of-way to improve access and maintenance. This Improvement Project reflected the City's desire to facilitate future maintenance, rather than alleviate modeled performance problems.

CIP4 Addresses Known Issue Number 2 – Flooding of the MSASP Area

The cost and difficulty of implementing this project is not fully understood at this time. The preliminary alignment selected for the new dual 48-inch pipelines in a new right-of-way (as shown on Figure 6-1 as CIP 4.1) crosses private property along the 101 Freeway interchange and the El Portal Canal, where there is a large parking lot serving a hotel. While it does not appear that structures would be impacted, an easement would be necessary to assure long-term accessibility and the costs of land and permitting were not included in the preliminary cost estimate in Section 6.3. The cost estimate does not include decommissioning the culverts under the interchange and Highway 101, as it is assumed these will be disconnected, but may be needed for Highway drainage (CIP 4.2).

6.1.2.5 Capital Improvement Project Five

Due to the significant number of performance criteria violations, and the relatively flat terrain in the Central Millbrae Watershed, local improvements alone failed to produce sufficient reduction in flooding during the 10-year and 100-year events. The suite of components included in Improvement Project 5 are designed to achieve a reduction in flood depths for three locations that violated the performance criteria for depth during the 10-year event, as well as significant reaches of high velocity flood hazard along Tioga Drive. The proposed improvements also contribute to the improvement of widespread lower risk flood hazards throughout downtown.

CIP5 Addresses Known Issue Number 3, In Addition to Other Problems

Improvements include:

- Increasing pipe diameters all the way from Tioga Drive to Magnolia (CIPs 5.1-5.4) by 0.5 feet to 1.0 feet in diameter, depending on location;
- Relocating the connection of this line to the line in Taylor Boulevard (CIP 5.5) to allow additional parallel facilities to be added within street rights-of-way. This improvement includes capping the upstream end of the existing 4-foot diameter segment of storm drain (CIP 5.7); and
- Increasing pipe size just before the Taylor Boulevard line empties into the box culvert under Broadway to accommodate the additional flow (CIP 5.6).

The cost and difficulty of implementing this project is not fully understood at this time. The preliminary alignment selected for the new right-of-way was chosen to make use of City streets, but the extent of conflict with existing utilities is unknown and may impact the practicality of implementing this improvement.

6.1.2.6 Capital Improvement Project Six

The City has indicated that past flooding has occurred at Taylor School, and requested that a connection between the existing valley gutter at the school and the storm drain system be made to accommodate runoff from this area. This improvement was modeled as a new 24-inch storm drain connecting at Ashton and Taylor (CIP 6). The improvement did not have a discernable impact on system performance.

CIP6 Addresses Known Issue Number 5 – Flooding at Taylor Middle School

6.1.2.7 Capital Improvement Project Seven

The improvement projects along Tioga Drive were designed to alleviate flood hazard, where velocities are expected to be up to 14 feet per second during the 100-year, 24-hour event (CIP 7.1-7.5). The 6-inch increase to the existing 30- and 36-inch lines increase capacity to carry high flows underground, rather than in the street. Achieving the recommended amount of cover over the new pipe installations should be undertaken with care, as preliminary analysis suggests that there is less than 2-feet of cover available. It is reasonable to assume that adjustments in new pipe inverts can be made to obtain sufficient cover. CIPs 7.3 - 7.5 overlap with the improvements to address 10-year flood depths proposed in CIPs 5.1 and 5.2, but since the Tier 3 flood hazard improvements may be less cost effective to implement, they are not recommended without further study.

6.1.2.8 Capital Improvement Project Eight

The increases in pipe size along Helen Drive proposed by CIPs 8.1 - 8.3 reduce flood hazards, where velocities in the 100-year event are expected to be as high as 10.6 feet per second under the existing condition. While the improvements do not eliminate street flooding during the 100-year, 24-hour event, the flood hazard is expected to decrease below the design criteria.

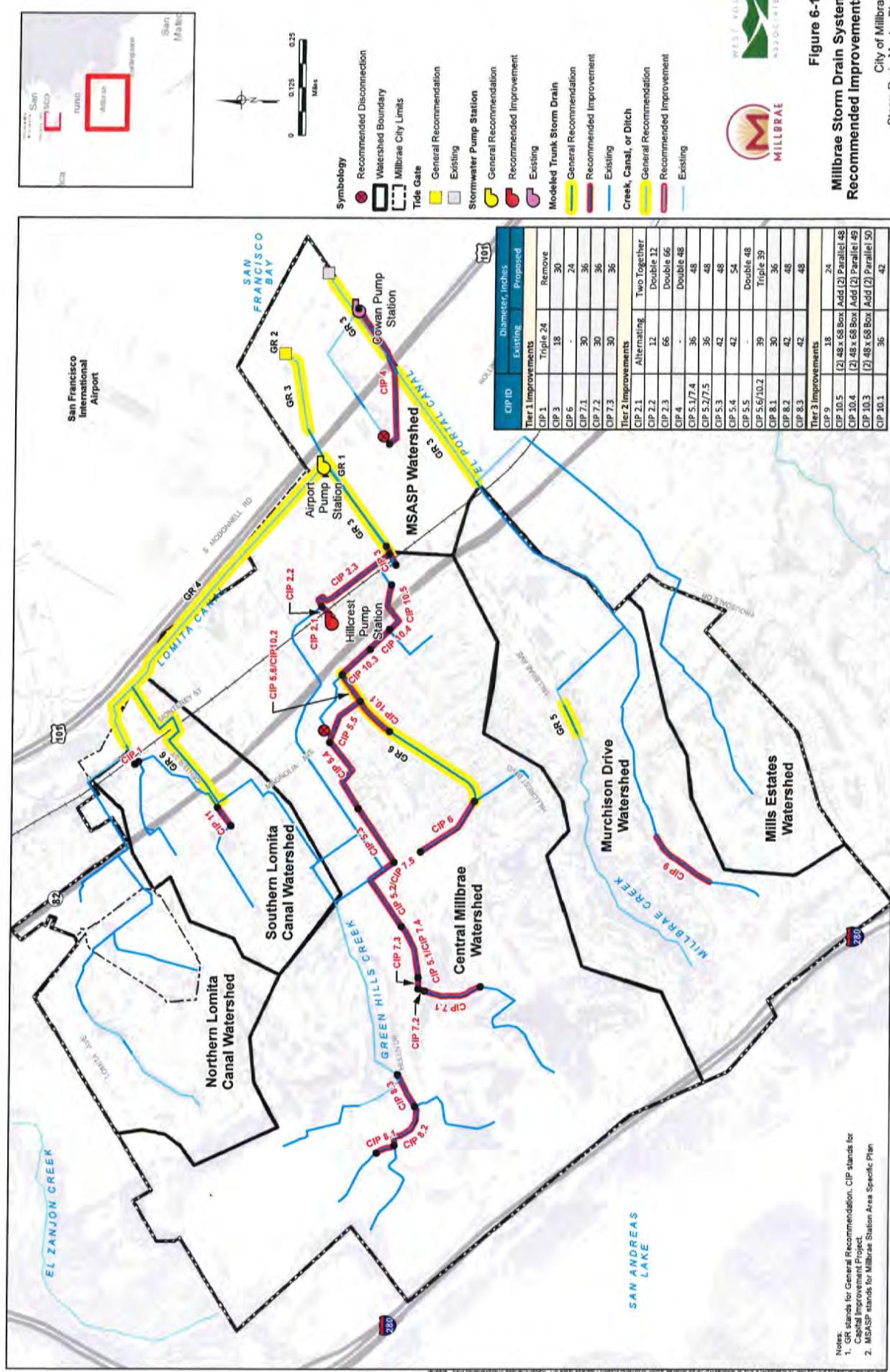
6.1.2.9 Capital Improvement Project Nine

The improvement recommended along Center Street at CIP 9 was proposed because the existing condition 100-year, 24-hour model indicated a large amount of overflow at the downstream end of this link. Flood hazard was under 6 without improvement since velocity is only expected to be 0.48. It is likely that overland flow would distribute, reducing the overall depth of flooding, but the depth is still excessive and can be alleviated with a 6-inch increase in diameter. Although this is considered a Tier 3 improvement, the cost of the improvement was included in the total cost estimate of Table 6-1. For this proposed improvement, less than 2-feet of cover is available at both the upstream and downstream ends of the segment and care should be used in design to address this issue. Prior to the implementation of this improvement, the connection of this system with Center Street should be verified. During field investigations, the City indicated it does not connect to the 42-inch line from Greenhills Park, but it is possible that a connection exists that could not be located.

6.1.2.10 Capital Improvement Project Ten

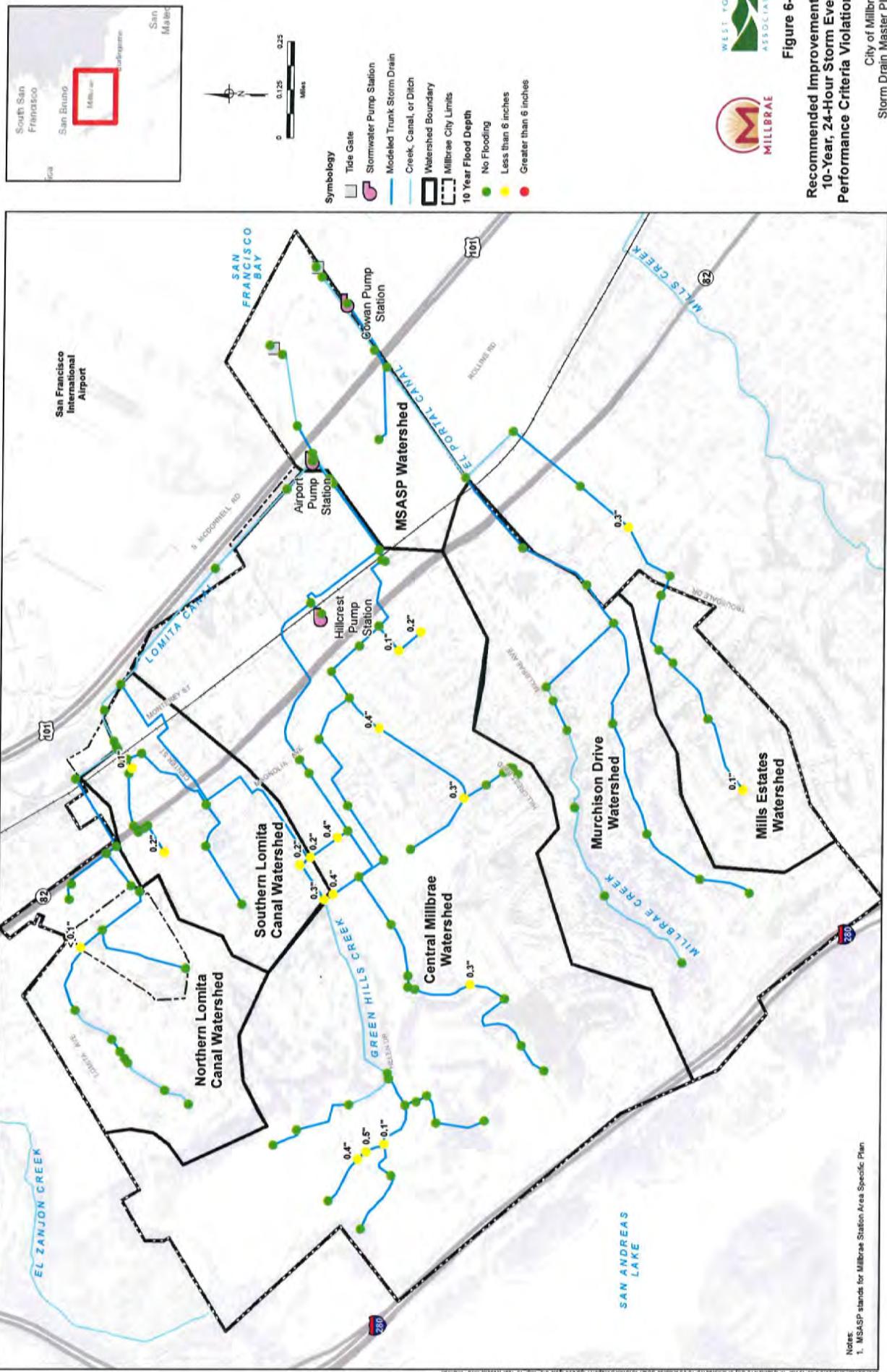
CIPs 10.1 – 10.5 represent a significant investment to alleviate street flooding that may be less severe than predicted by the one-dimensional XPSWMM model. Flooding in the areas upstream of this location could not be reduced below a flood hazard of 6.0 without adding a second box culvert in Magnolia Drive, which receives flows from both Taylor and Richmond. The downstream culvert passing through the new Transit-Oriented Development near the BART station has already proposed to increase and relocate the existing box culvert connection to Highline Canal, which contributes to the success of this improvement at achieving its intended result. Obtaining sufficient cover to construct the proposed 3.5-foot circular pipe and the large box culverts may be a concern, particularly at the lower end near El Camino Real. It is reasonable to assume that minor adjustments to inverts in the installation of the improvements will be sufficient over the length of the installation to address this concern. While the cost estimates for these improvements are shown in Table 6-1, they are not reflected in the total for the proposed improvements.

6.1.3 Additional Considerations


In the past, the City has considered whether the storm drainage system could continue to perform if the City's side of the Airport Pump Station were taken off-line and the 33-inch line under Highline Canal was allowed to drain to the Bay by gravity. In the existing conditions modeling, even with the pump station on-line there were performance challenges in the 33-inch line, which is well below the tide level a significant amount of the time. This line should not be expected to be able to fully gravity drain during any tide event higher than -3.6 feet NAVD88. With future projected high tides of 11.2 feet NAVD88, such a re-operation is not advised.

6.2 COST ESTIMATES

Cost estimates for the proposed improvements were based on available information from recent Caltrans bids within the region, as well as a bid received by the City for a recently constructed storm drain in the vicinity of Ashton Avenue and Taylor Boulevard. Material costs for new or upsized storm drains were based on the cost per pipe diameter per linear foot of pipe included in the Ashton Avenue and Taylor Boulevard project bid. Other project costs (mobilization, traffic control, other material costs, etc.) were estimated by scaling up the pipeline material costs based on the ratio of pipeline material costs to other project costs used in the Ashton Avenue and Taylor Boulevard project bid. Costs for abandoning storm drains were based on an average CalTrans estimate of \$300 per linear foot of abandoned pipeline.


Cost estimates are highly dependent on location, and the preliminary cost estimates provided do not reflect individual site costs that may be applicable, such as the purchase of easements or permitting. It is also unknown whether there are any potential utility conflicts that may impact the ultimate improvement design. Costs were driven by the hydraulic capacity needed to achieve design criteria and the available depth of cover alone. Utility conflict analysis during detailed design may suggest that a single, larger improvement be constructed instead of a second, parallel line, chosen based on cost of pipe construction alone. Table 6-1 presents preliminary cost estimates for the proposed improvements discussed above.

(THIS PAGE LEFT BLANK INTENTIONALLY)

Figure 6-1
Millbrae Storm Drain System Recommended Improvements
City of Millbrae
Storm Drain Master Plan

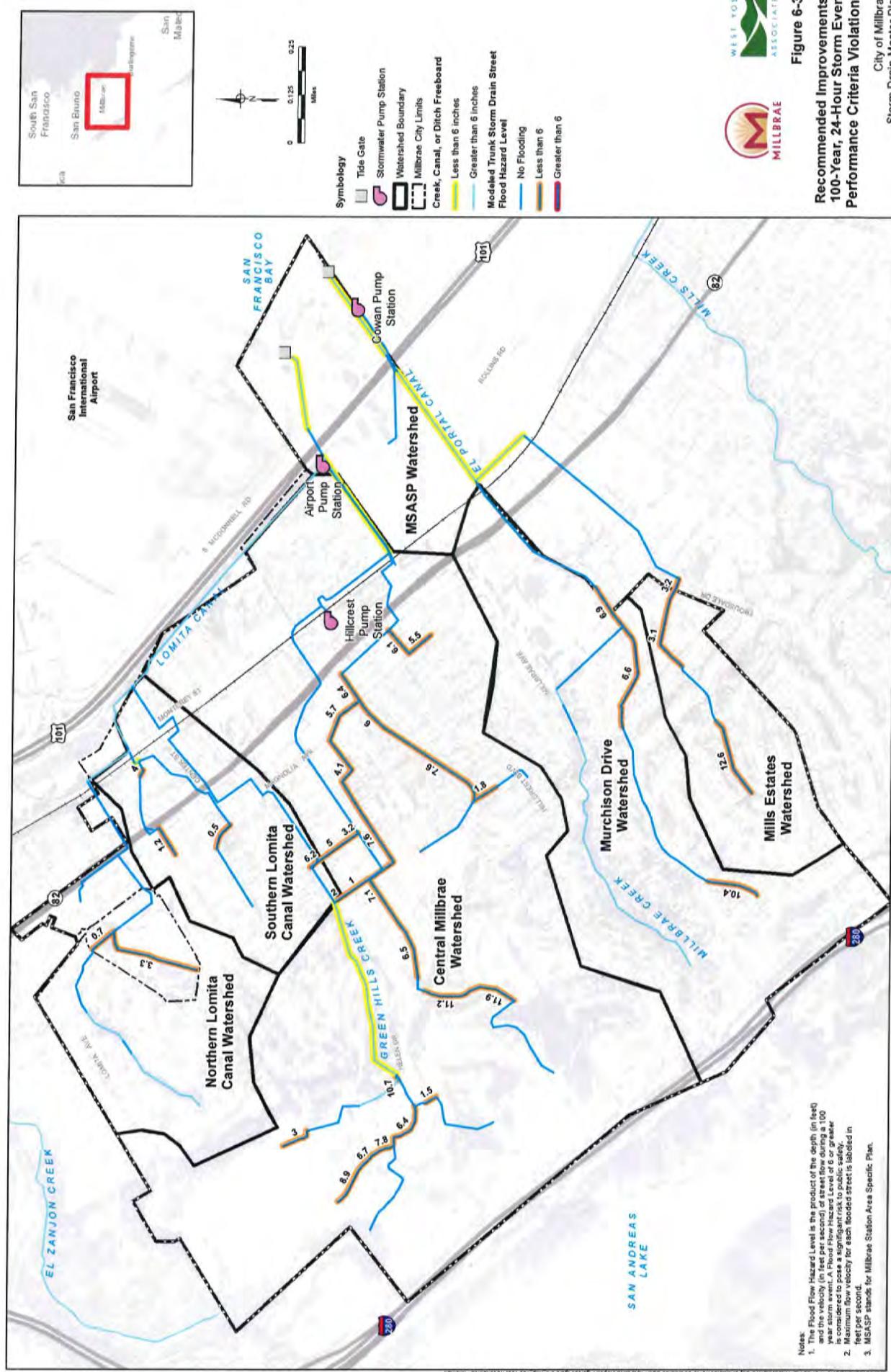

(THIS PAGE LEFT BLANK INTENTIONALLY)

Figure 6-2
Recommended Improvements:
10-Year, 24-Hour Storm Event
Performance Criteria Violations

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

Figure 6-3
Recommended Improvements:
100-Year, 24-Hour Storm Event
Performance Criteria Violations

City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

This chapter summarizes the conclusions and recommendations of this SDMP.

7.1 CONCLUSIONS

Existing information about the City's storm drain system was reviewed in Chapter 2, and field data was collected to more accurately describe the system, as discussed in Chapter 3. A hydrologic and hydraulic model was developed in XPSWMM based on regional climate data, topography, and the City's drainage system layout, as discussed in Chapter 5. The peak flow rates predicted by the hydrologic component of the model for selected catchments were compared with the peak flow rates calculated for those catchments using the City's Rational Method. The hydrologic model was calibrated to minimize differences between the City's method and the modeling by adjusting the computed watershed widths in XPSWMM. The sum of all differences was minimized to less than 0.33 cfs/acre for the new 10-year and 100-year rainfall distributions presented in Table 5-2.

Hydraulic model geometry was generally limited to major drainage channels and portions of the system greater than 18-inches in diameter. The hydraulic model accurately predicted flooding at all locations noted by the City to have experienced flooding during previous significant storm events, with the exception of MSASP flooding, historically caused by blocked drain inlets (Known issue number 2).

West Yost worked with the City to develop performance criteria and design criteria that provide a reasonable level of protection from future flooding. The combined hydrologic and hydraulic model was then used to identify 8 areas of the existing storm drain system that did not meet the performance criteria during the 10-year, 24-hour storm event, as well as a number of areas that may cause nuisance flooding without exceeding the performance criteria. Significant areas of street flooding were predicted during the 100-year, 24-hour storm event. The City's storm drain system was not designed for a storm of this size, and thus significant street flow is expected through the City during the 100-year event.

In addition to improvements suggested by the model, the City suggested improvements to improve two problems that were not modeled: a drainage line serving Taylor Middle School to address known issue number 5 and relocation of the line connecting MSASP to Cowan Pump Station to improve maintenance access and address known issue number 2. The City has already implemented an improvement to address known issue number 4, although nuisance flooding may persist at this location, as sites below drainage inlets cannot discharge into the system without ponding.

7.2 RECOMMENDATIONS

Ten (10) capital improvement projects were designed and modeled per the design standards of Chapter 4. Four projects have an estimated cost under \$2M each, and are designated as "Tier 1 Improvements", with a total estimated cost of \$3.3M. At the time of completion of this SDMP, the City had initiated work on CIP6, drainage of Taylor Middle School.

Four projects for a total of \$30.3M are designated as "Tier 2 Improvements" to alleviate 10-year performance criteria violations or areas of significant 100-year flood hazard, but where the CIP costs were estimated to exceed \$2M.

Two projects for a total of \$8.7M were designed to a 100-year standard, per the design standards of Chapter 4, but are located in areas where further investigation should be performed prior to design and implementation. These are designated as “Tier 3 Improvements”. See Chapter 6 for a detailed list of these CIPs. In addition to these recommended CIPs, West Yost identified several other recommended improvements during review of existing information, site visits conducted to gather data for the model, and through discussions with City staff.

- A routine CCTV inspections program should be implemented to identify and resolve maintenance issues such as collapsed pipes, blockages, and trash before they become a problem.
- Areas of the City’s system where access is not available should be uncovered or have manholes added.
- A second pump should be added at the Airport Lift Station to provide reliability.
- The flap gates at the outlet of Highline Canal should be repaired so that they can close completely.
- The City may wish to consider increasing the height of the Highline and El Portal Canal embankments to guard against future sea level rise.
- Excess vegetation in the Lomita Canal should be removed to reduce the chance of continued flooding in this area.
- The culvert where Mills Creek crosses Ashton Avenue should be immediately repaired and replaced to prevent harm to the structures it passes under.

At this time of completion of this SDMP, the City had initiated design of a culvert realignment to address the Mills Creek crossing of Ashton Avenue.

In addition to the infrastructure improvements listed above and detailed in Chapter 6, West Yost recommends further hydrologic and hydraulic modeling using a 2D model to provide a more refined evaluation of localized flood risk that can be used to develop more detailed design and cost estimates of improvements prior to construction.

8.1 REFERENCES

Caltrans, *Contract Cost Data*. Caltrans, May, 2018. <http://sv08data.dot.ca.gov/contractcost/>

City of Dixon, *City of Dixon Engineering Standards and Specifications*. City of Dixon, April 2007

City of Millbrae, *Department of Public Works Engineering Division, Part II Technical Provisions for Public Works Construction*. City of Millbrae, March 2005

City of Millbrae, *City of Millbrae Green Infrastructure Workplan*. City of Millbrae, June 2017.

City of Millbrae, *Administrative Review Draft 2040 General Plan Update*. City of Millbrae, (unpublished)

City of Sacramento, *User's Manual for Sacramento Stormwater Management Model (SSWMM96)*. City of Sacramento, January 1996. Figure 3-4.

City of Vacaville, *City of Vacaville Standard Specifications and Standard Drawings*. City of Vacaville, September 1990, revised June 2015.

County of San Mateo, *Sea Level Rise & Overtopping Analysis for San Mateo County's Bayshore*, County of San Mateo, May 2016

County of San Mateo, *County of San Mateo Sea Level Rise Vulnerability Assessment*. County of San Mateo, March 2018

County of San Mateo, "San Mateo County Guidelines for Drainage Review". County of San Mateo, n.d.

County of Santa Clara, *Santa Clara County California Drainage Manual*. Santa Clara County, August 2007.

FEMA, *Flood Insurance Study Number 0681CV001C*, Federal Emergency Management Agency, August 2017.

FEMA, *Flood Insurance Study Number 0681CV002C*, Federal Emergency Management Agency, August 2017.

GHD, *Storm Drain Master Plan Update*. City of San Bruno, 2014.

Innovyze, *XPSWMM Reference Manual*. Innovyze, 2013. http://xpsolutions.com/assets/downloads/xpswmm/xpswmm_Reference_Manual.pdf

Kennedy/Jenks Consultants, "City of Millbrae – Assessment and Determination of Existing Infrastructure Capacity. Task Order D1- Storm Drain Data Collection". City of Millbrae, August 1998.

Kennedy/Jenks Consultants, "City of Millbrae – Assessment and Determination of Existing Infrastructure Capacity. Task Order D2 – Storm Drain, Mapping Evaluation and Electronic Base Map". City of Millbrae, December 1998.

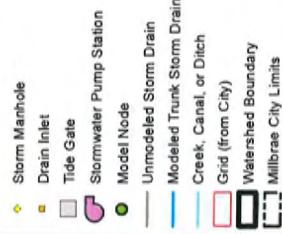
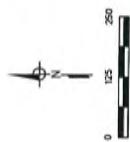
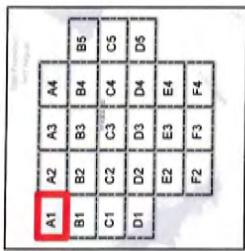
Kennedy/Jenks Consultants, "City of Millbrae – Assessment and Determination of Existing Infrastructure Capacity. Task Order D3a – Storm Drain Collection System, 'Design' Storm Evaluation". City of Millbrae, December 1998.

Kennedy/Jenks Consultants, "City of Millbrae – Assessment and Determination of Existing Infrastructure Capacity. Task Orders F2 and F3 – Stormwater Collection System Model Development and System Deficiency Summary". City of Millbrae, December 1999.

NOAA, "California Isopluvials of 10-year 60-minute precipitation in inches", *NOAA Atlas 14, Volume 6, Version 2 California*. National Oceanic and Atmospheric Administration, April 2011. <http://hdsc.nws.noaa.gov/pub/hdsc/data/sw/ca10y60m.pdf>

NRCS, *National Engineering Handbook, Part 630. Chapter 7: Hydrologic Soil Groups*. United States Department of Agriculture, National Resources Conservation Service, May 2007.

NRCS, "Web Soil Survey". US Department of Agriculture, Natural Resources Conservation Service, Last Modified August 2017. <https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm>

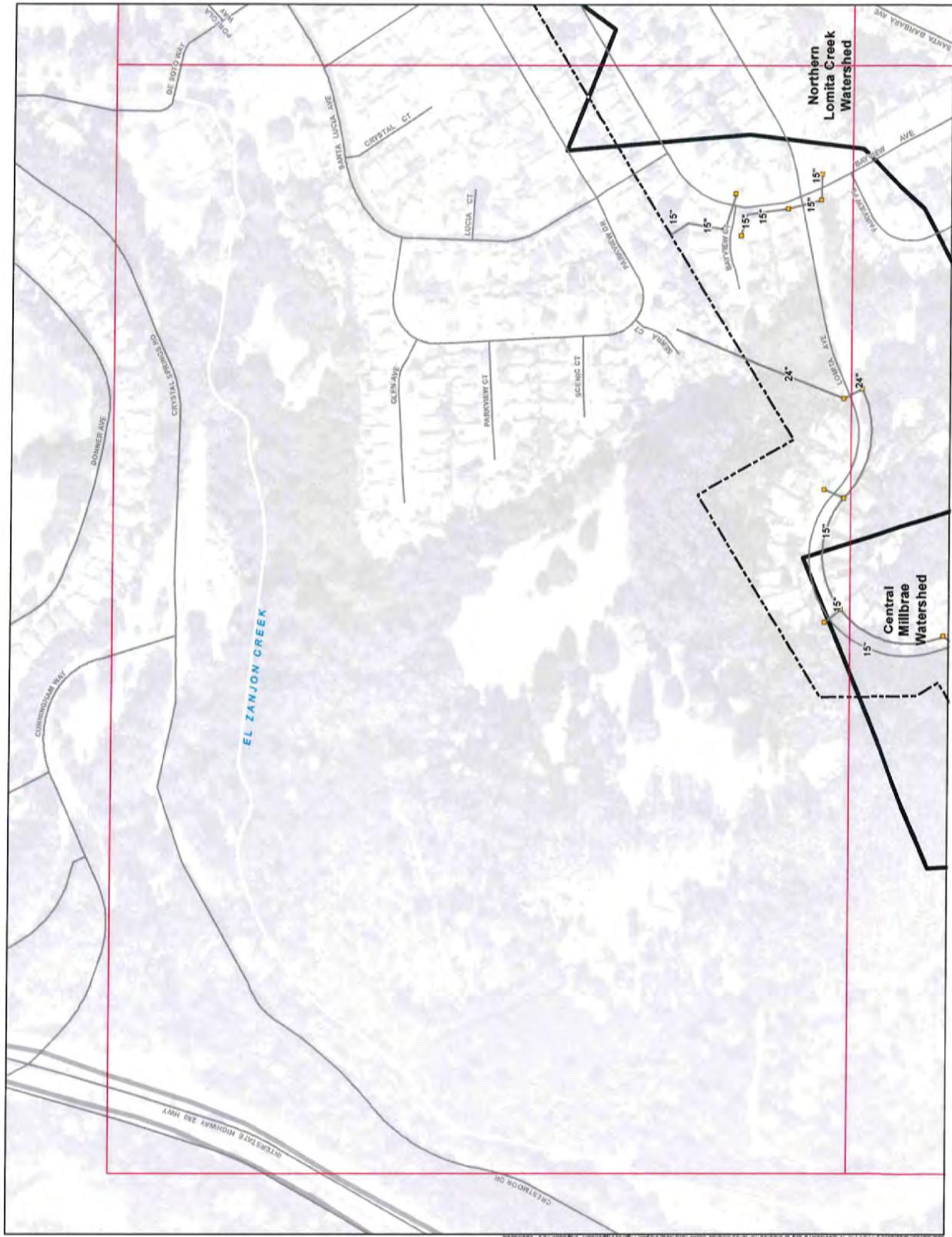



Vallejo Sanitation and Flood Control District, *Engineering Design Standards and Policies*. Vallejo Sanitation and Flood Control District, May 2002.

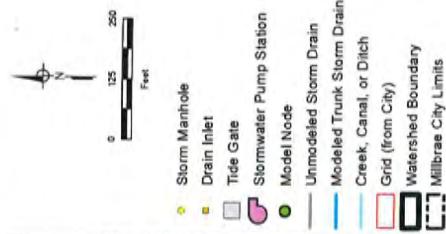
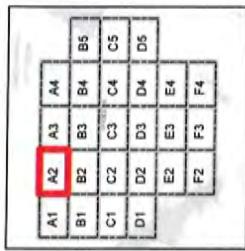
(THIS PAGE LEFT BLANK INTENTIONALLY)

APPENDIX A

Mapbook

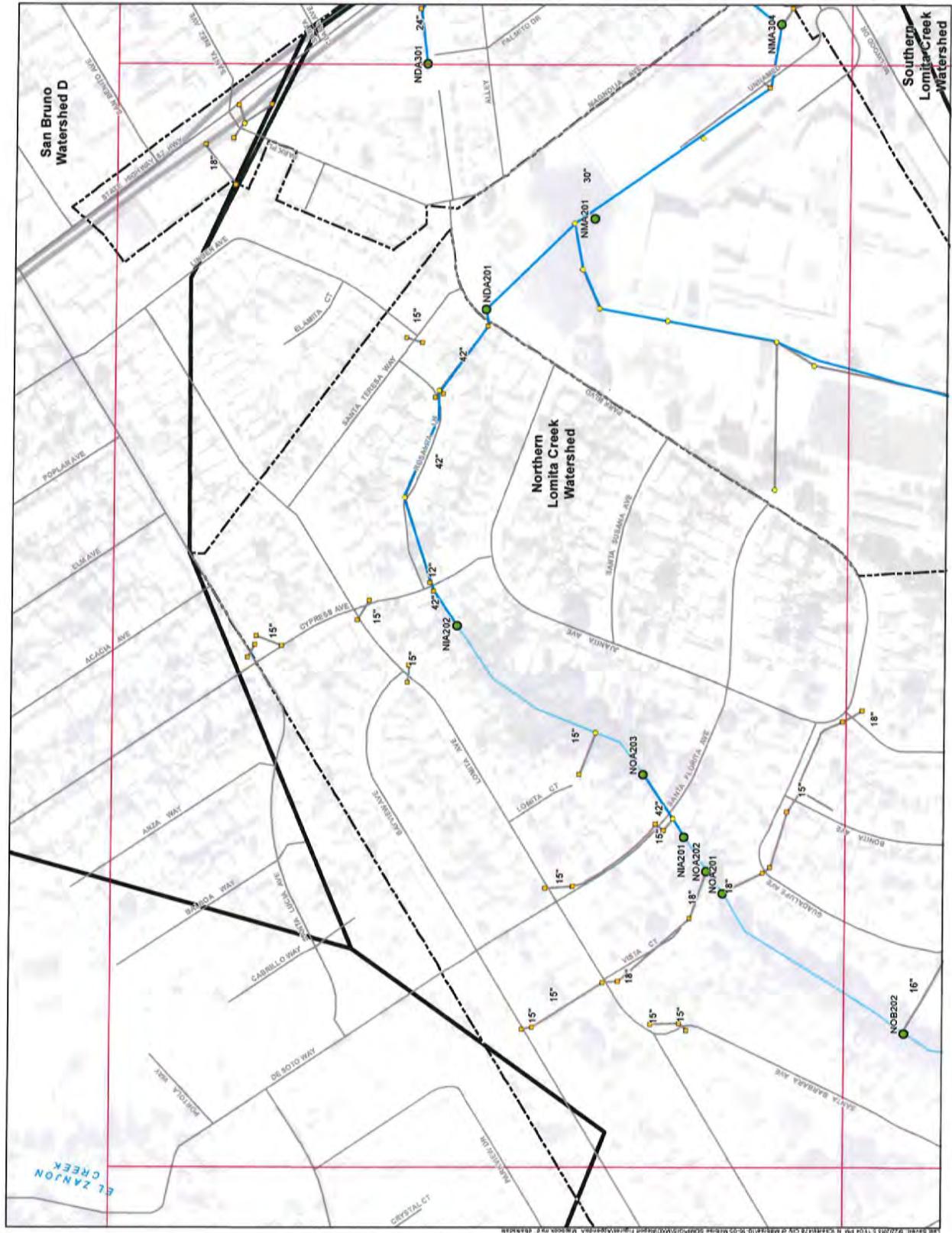
(THIS PAGE LEFT BLANK INTENTIONALLY)

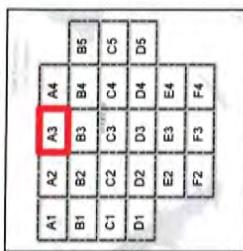

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.



Appendix A

Facility Mapbook for the City of Millbrae Page A1

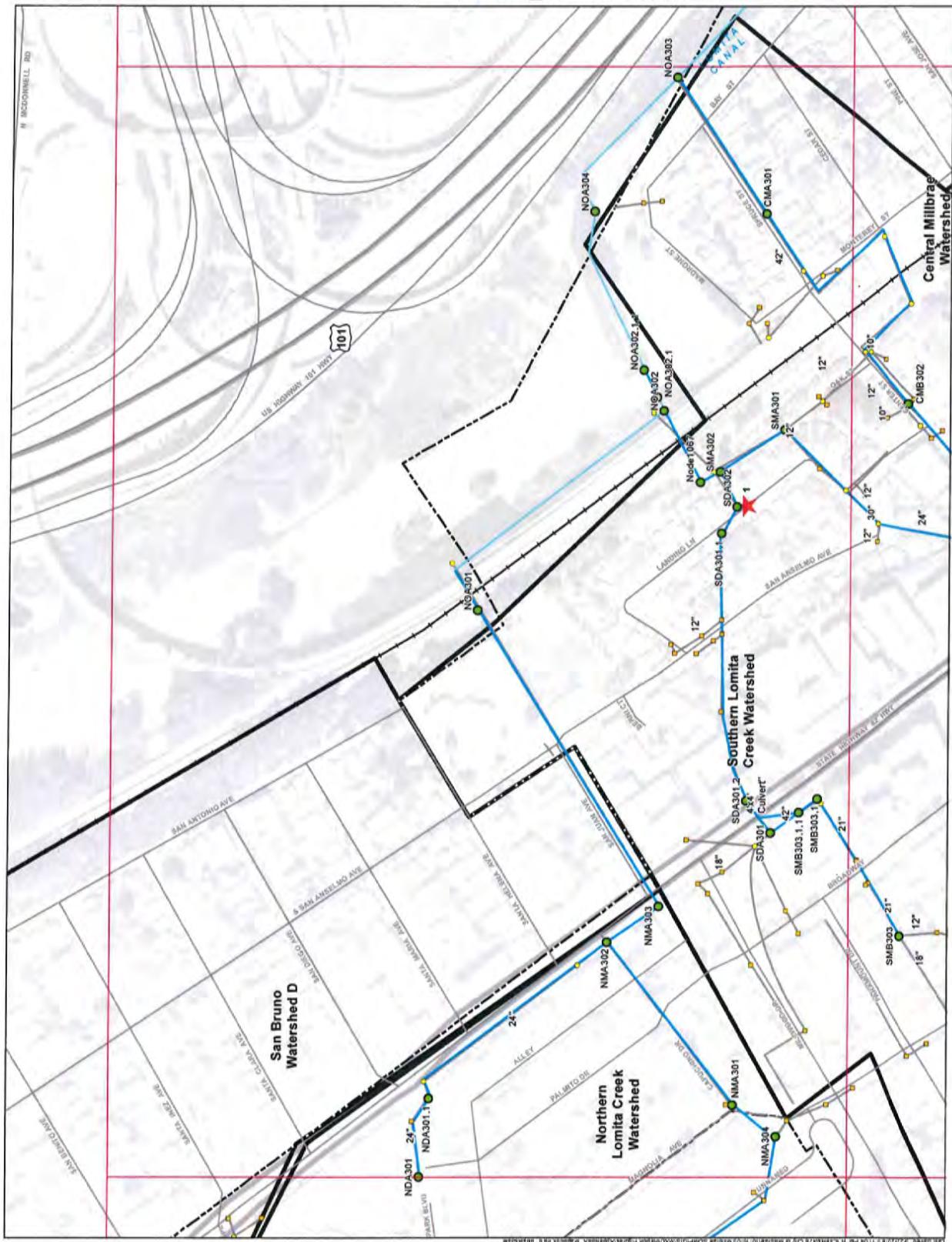
City of Millbrae
Storm Drain Master Plan


(THIS PAGE LEFT BLANK INTENTIONALLY)


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

Appendix A
Facility Mapbook for
the City of Millbrae
Page A2
City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

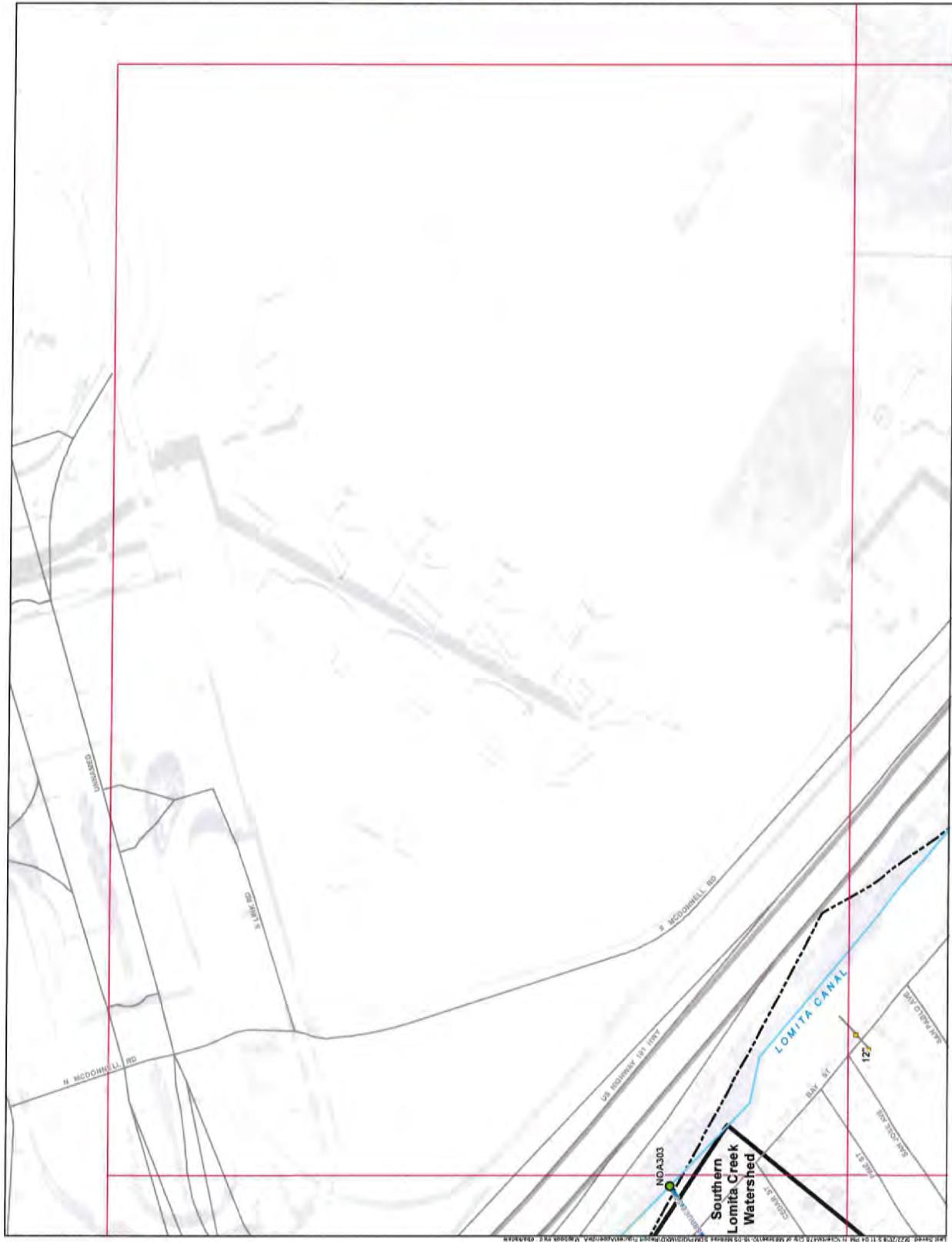


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

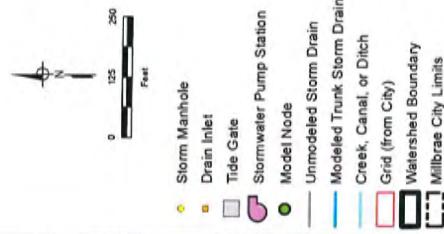
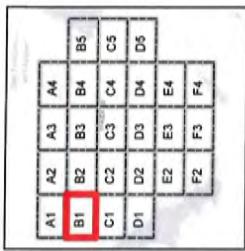
Appendix A
Facility Mapbook for
the City of Millbrae
Page A3

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)


Storm Manhole
 Drain Inlet
 Tide Gate
 Stormwater Pump Station
 Model Node
 Unmodeled Storm Drain
 Modeled Trunk Storm Drain
 Creek, Canal, or Ditch
 Grid (from City)
 Watershed Boundary
 Millbrae City Limits

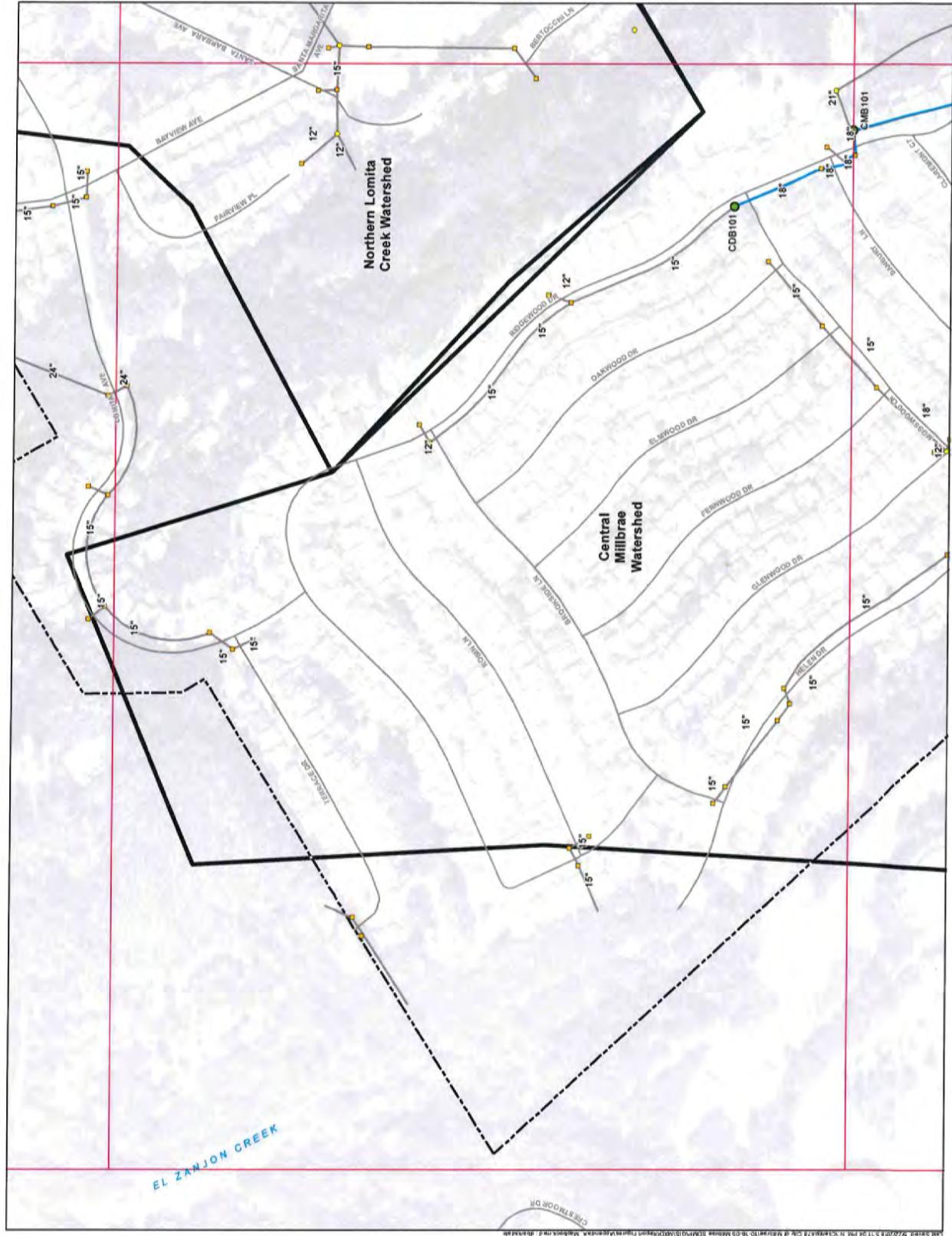
Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

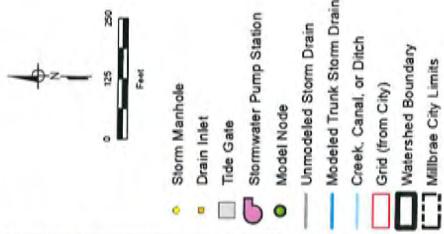
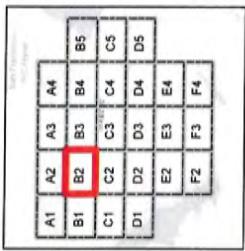



Appendix A
Facility Mapbook for
the City of Millbrae
Page A4

City of Millbrae
 Storm Drain Master Plan

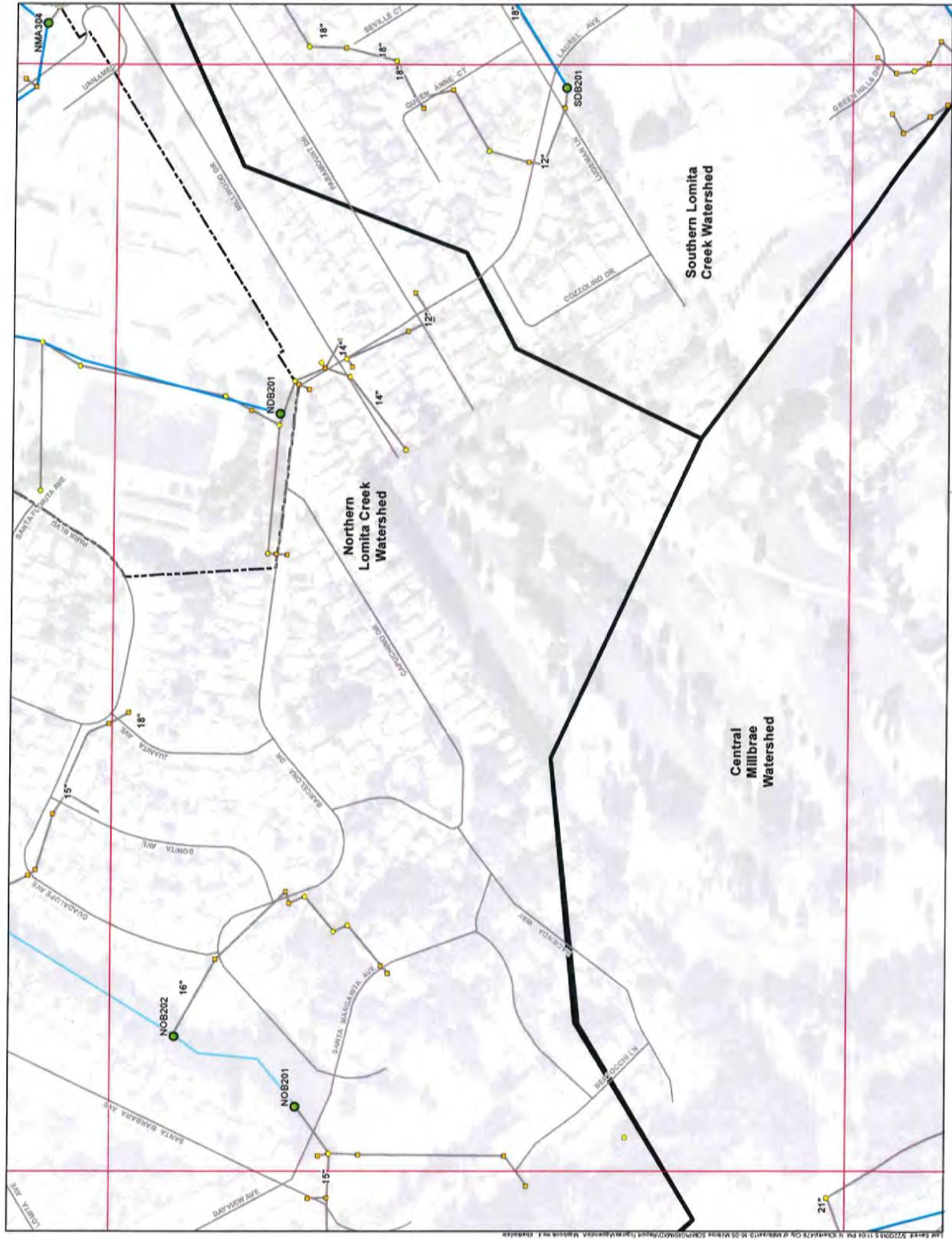
(THIS PAGE LEFT BLANK INTENTIONALLY)

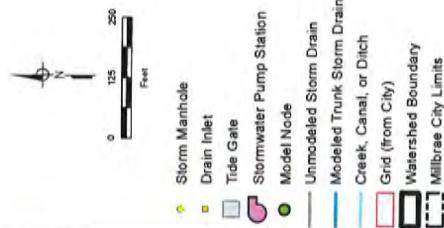
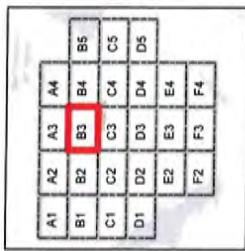

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.



WEST YOST
ASSOCIATES

Appendix A
Facility Mapbook for
the City of Millbrae
Page B1

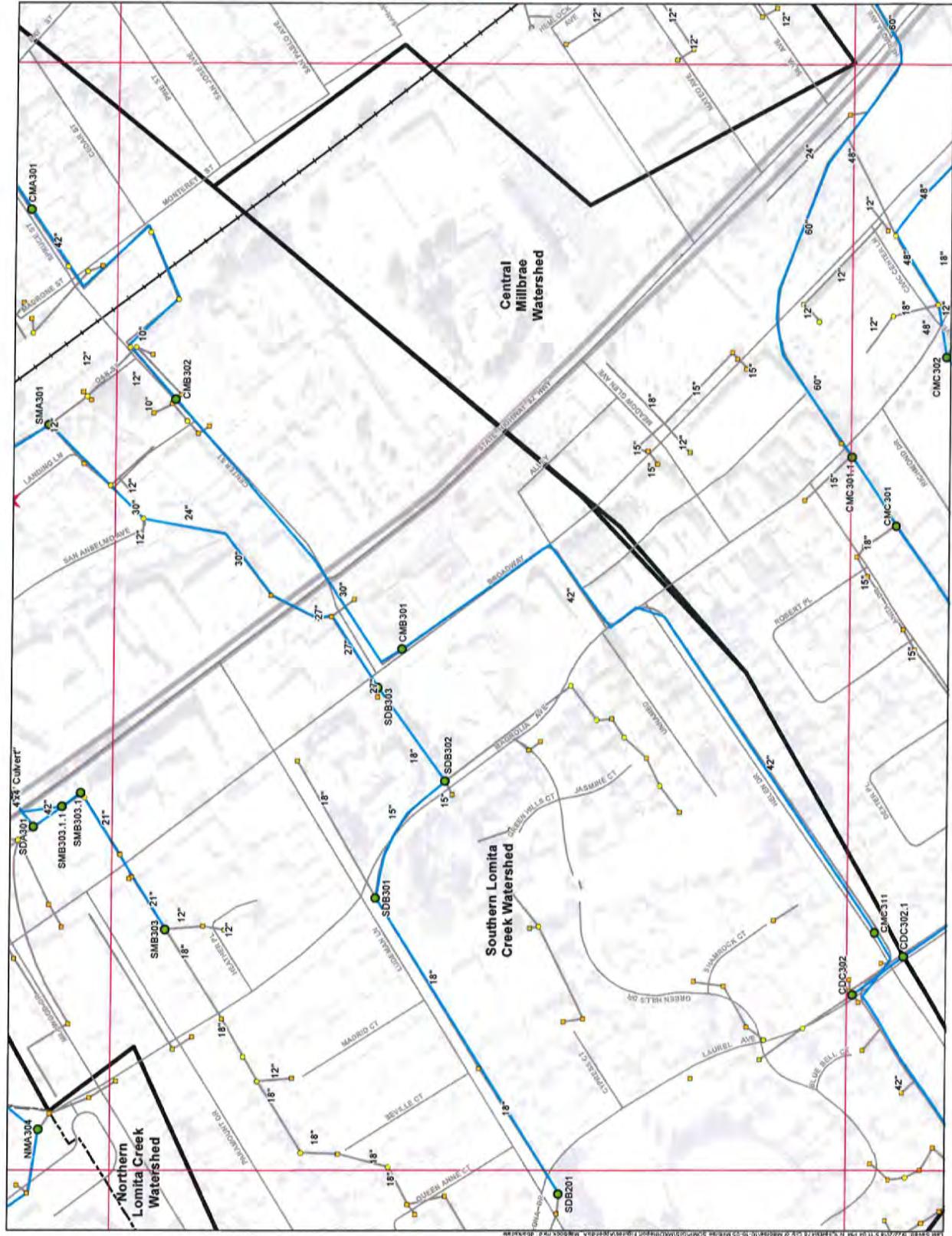
City of Millbrae
Storm Drain Master Plan


(THIS PAGE LEFT BLANK INTENTIONALLY)

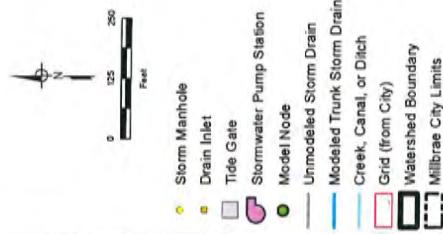
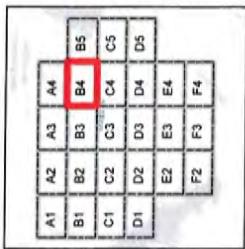


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

Appendix A
Facility Mapbook for
the City of Millbrae
Page B2
 City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

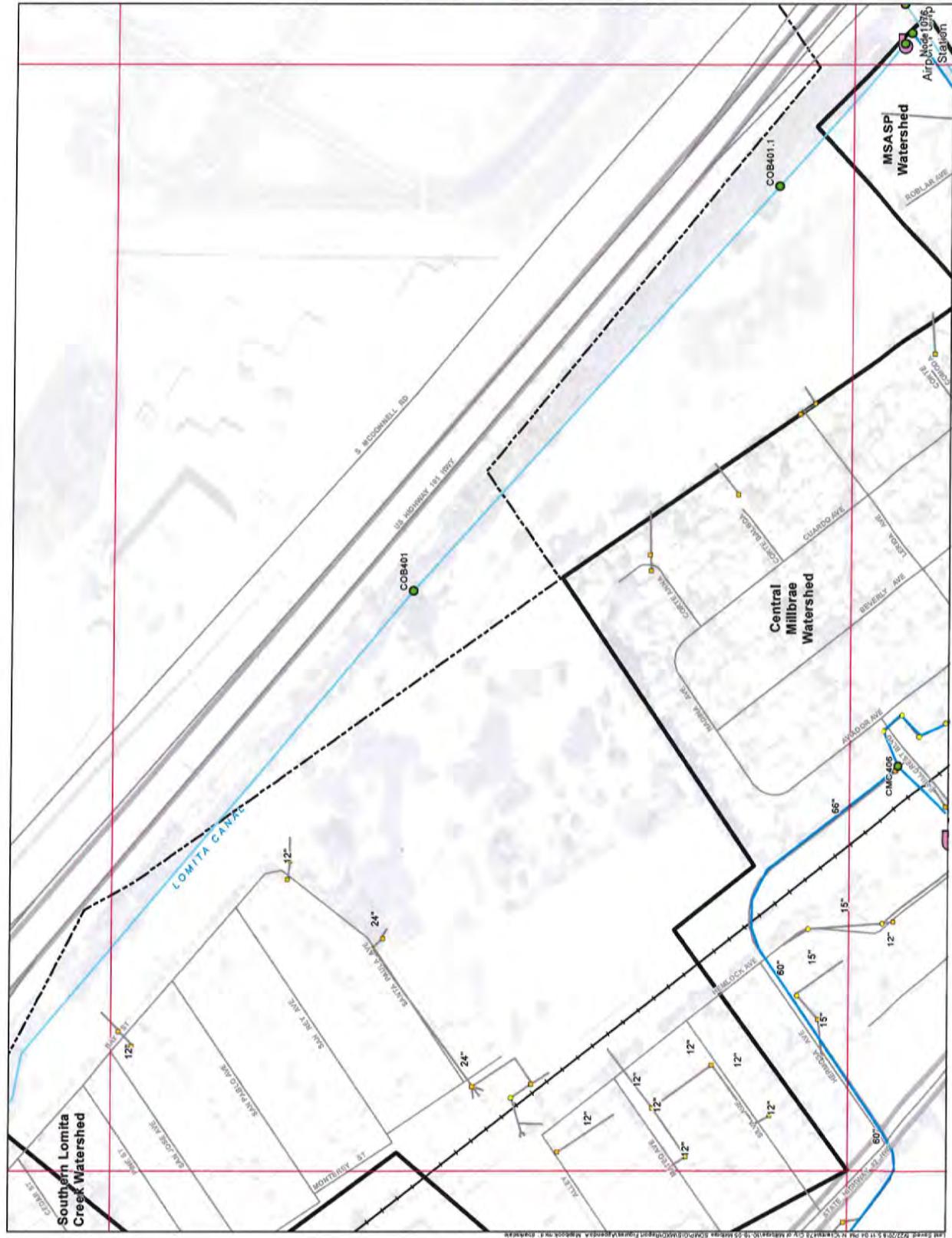


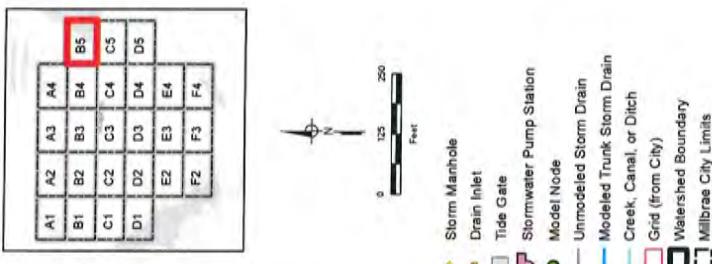
Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

Appendix A
Facility Mapbook for
the City of Millbrae
Page B3

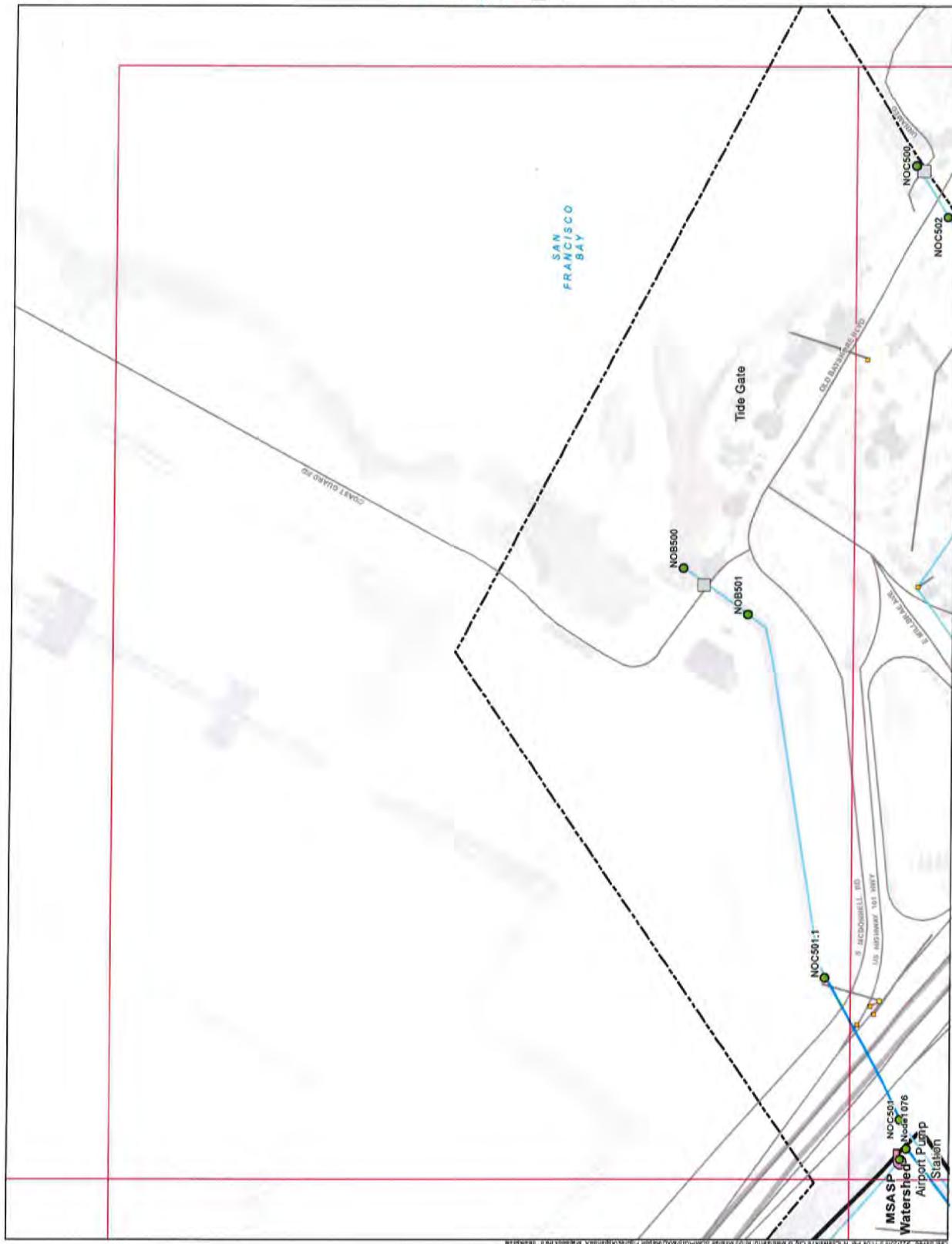
City of Millbrae
Storm Drain Master Plan

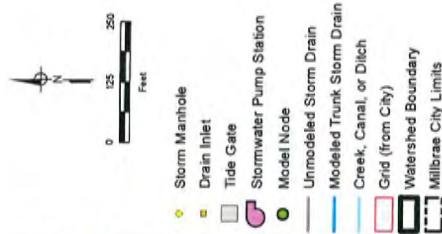
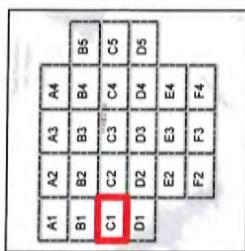

(THIS PAGE LEFT BLANK INTENTIONALLY)


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

Appendix A
Facility Mapbook for the City of Millbrae
Page B4
 City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

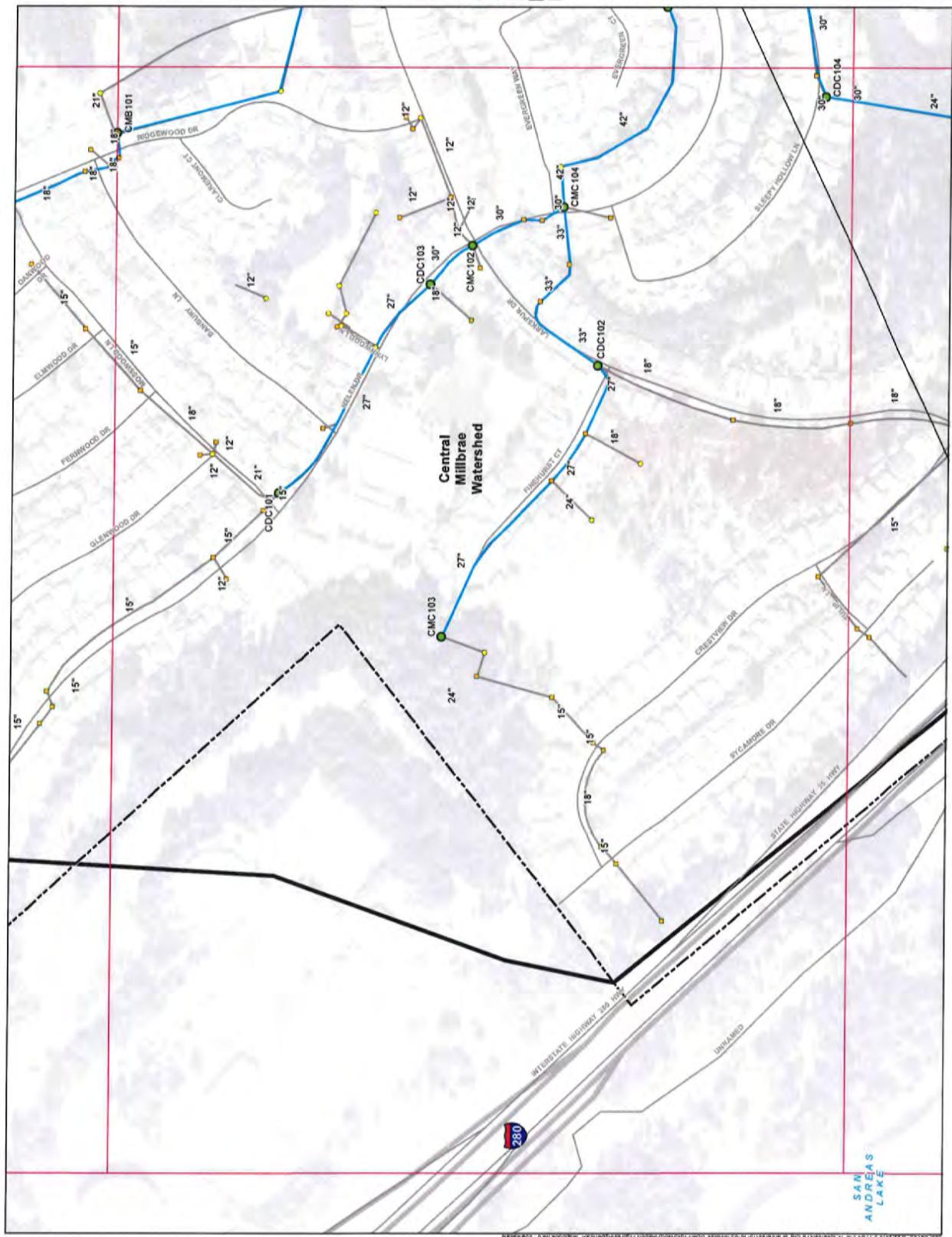

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.



Appendix A

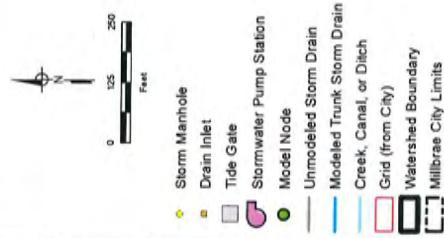
Facility Mapbook for
the City of Millbrae
Page B5

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)



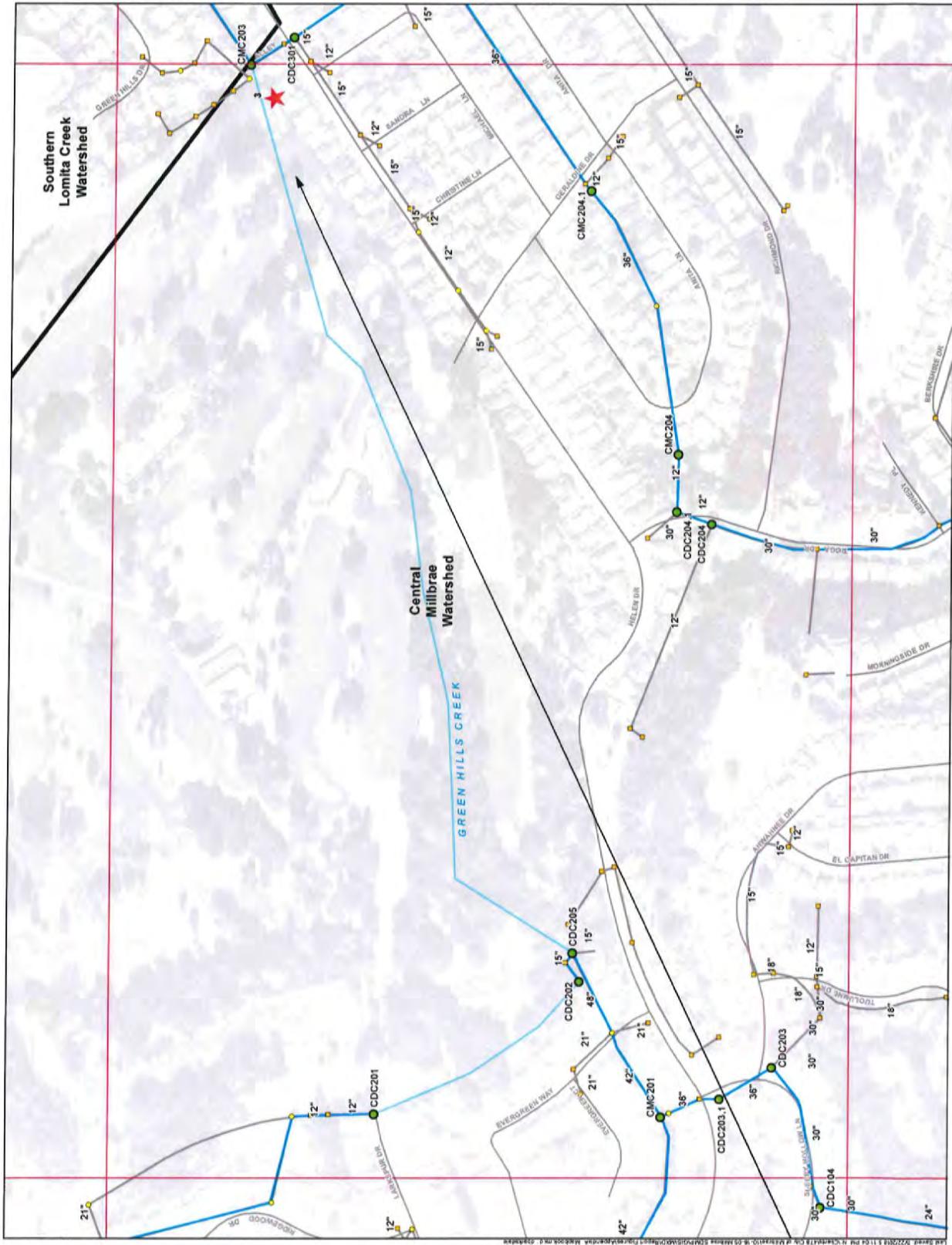
Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

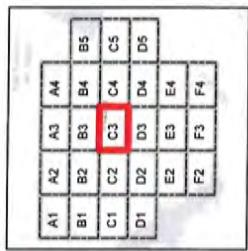

Appendix A Facility Mapbook for the City of Millbrae Page C1

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

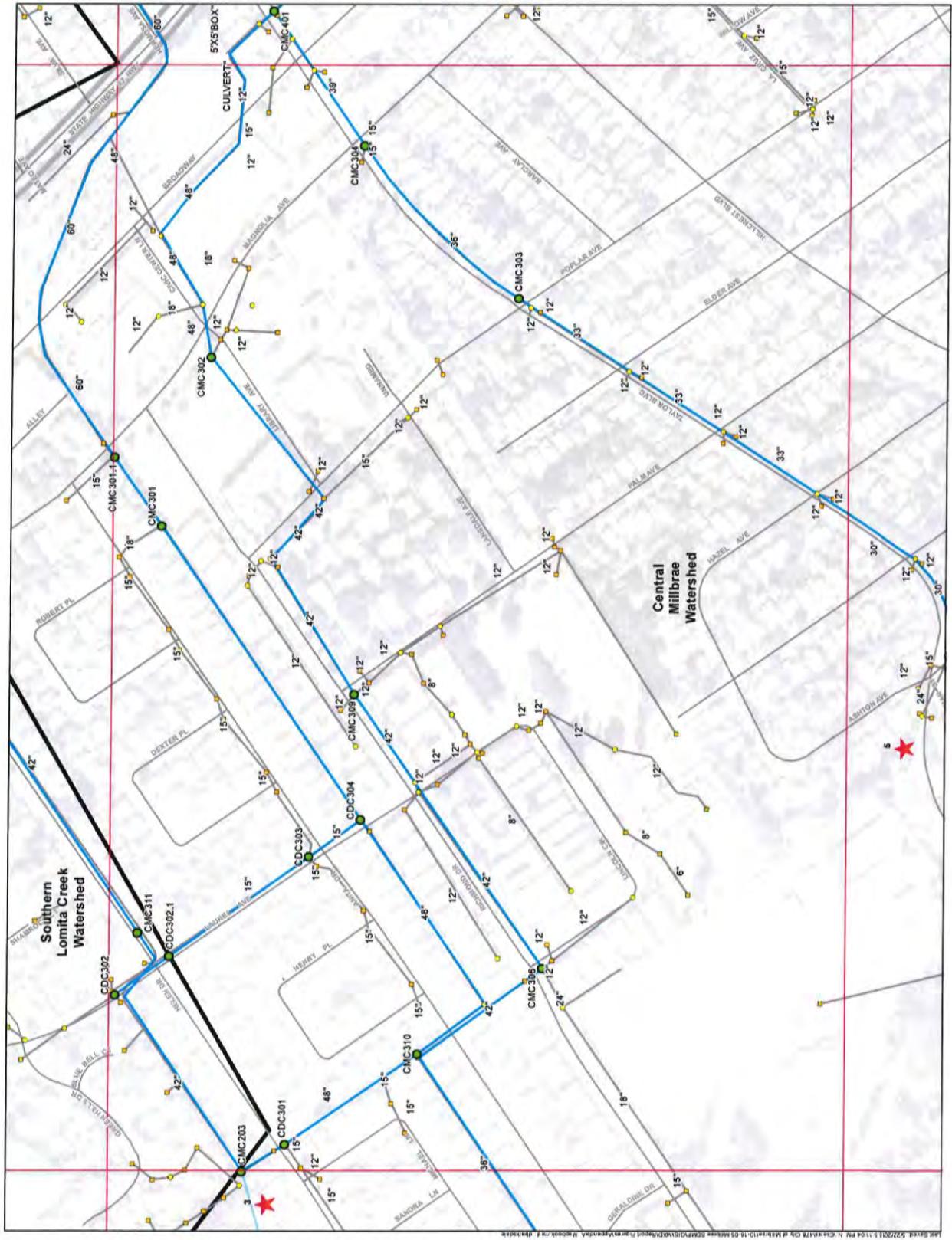
A1	A2	A3	A4
B1	B2	B3	B5
C1	C2	C3	C5
D1	D2	D3	D5
E2	E3	E4	
F2	F3	F4	

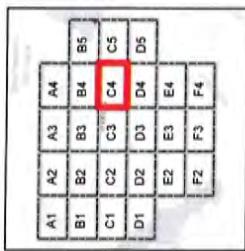

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.


Appendix A

Facility Mapbook for
the City of Millbrae
Page C2

City of Millbrae
Storm Drain Master Plan


(THIS PAGE LEFT BLANK INTENTIONALLY)


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

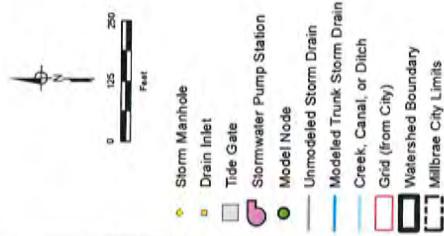
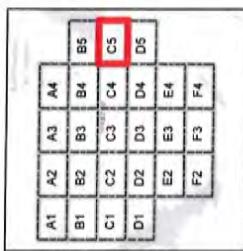
City of Millbrae
Storm Drain Master Plan
Page C3

(THIS PAGE LEFT BLANK INTENTIONALLY)

Legend for Millbrae City Storm Drainage System map:

- North arrow
- Scale: 0 to 250 feet
- Storm Manhole (circle with cross)
- Drain Inlet (square)
- Tide Gate (square with diagonal line)
- Stormwater Pump Station (pink circle)
- Model Node (green circle)
- Unmodeled Storm Drain (grey line)
- Modeled Trunk Storm Drain (blue line)
- Creek, Canal, or Ditch (light blue line)
- Grid (from City) (red line)
- Watershed Boundary (black line)
- Millbrae City Limits (black line)

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

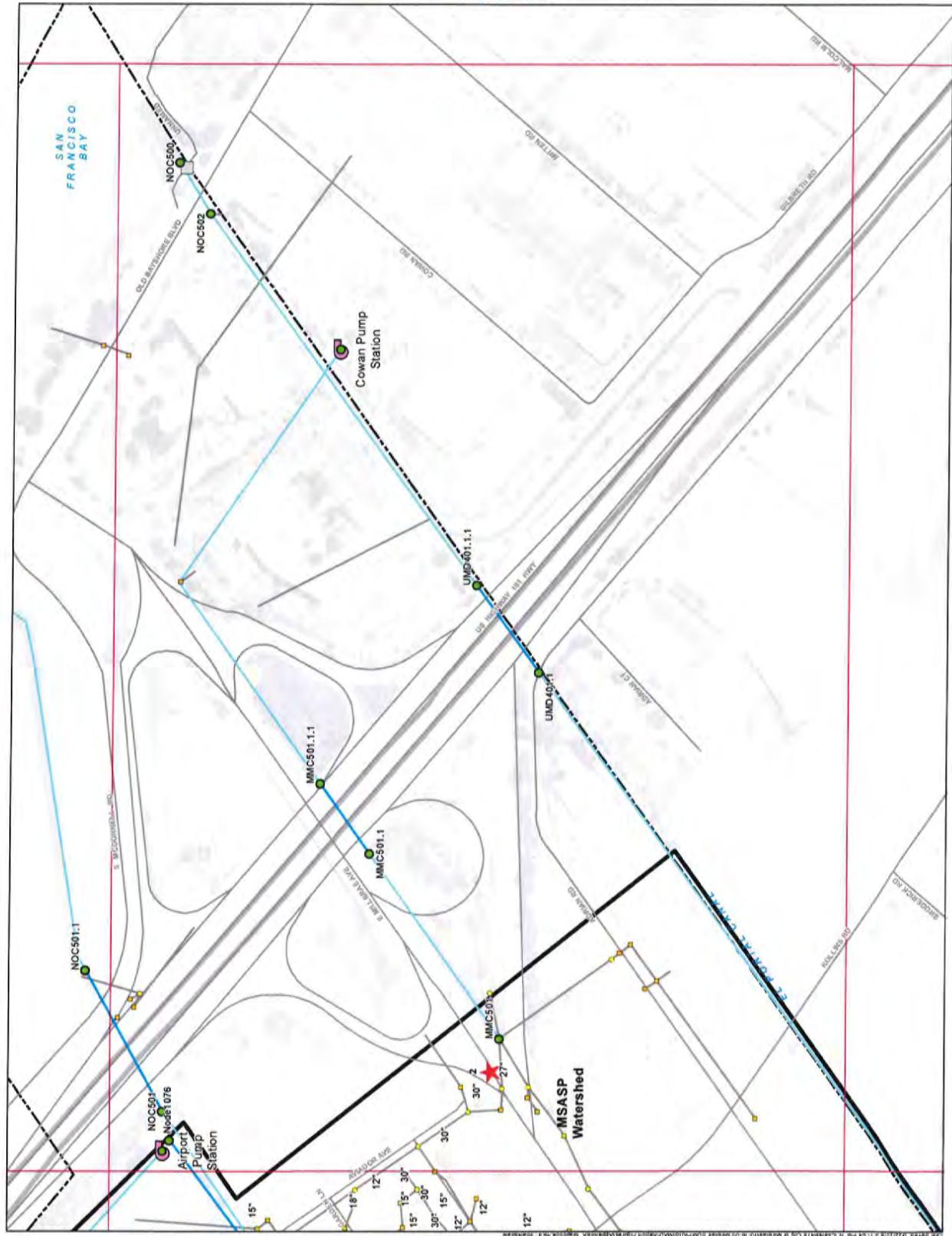



Appendix A
Facility Mapbook for
the City of Millbrae
Page C4

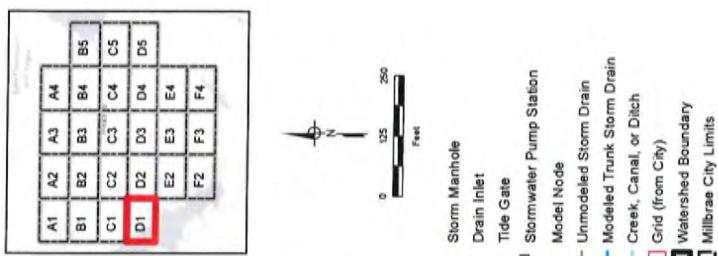
City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.



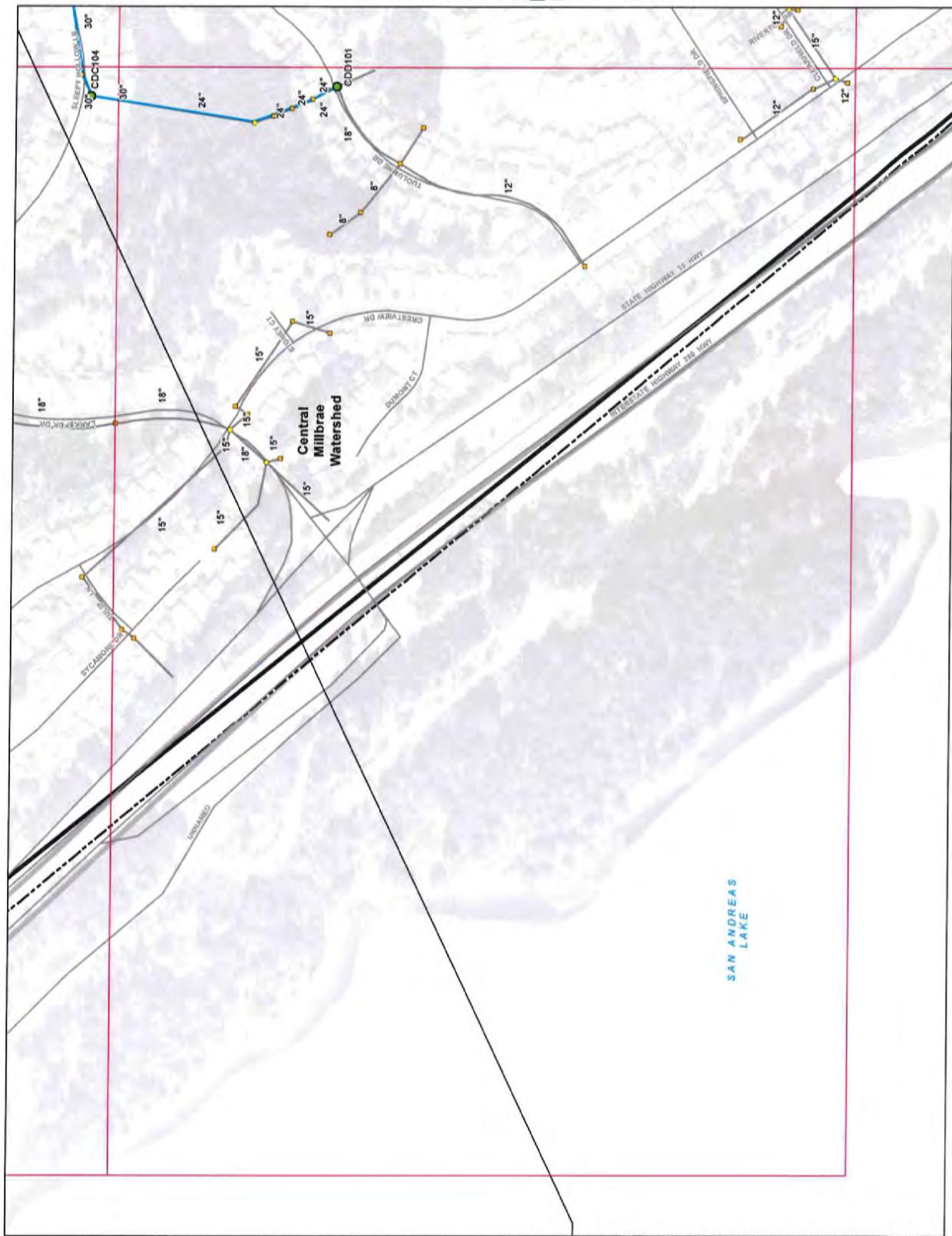
Appendix A


Facility Mapbook for the City of Millbrae

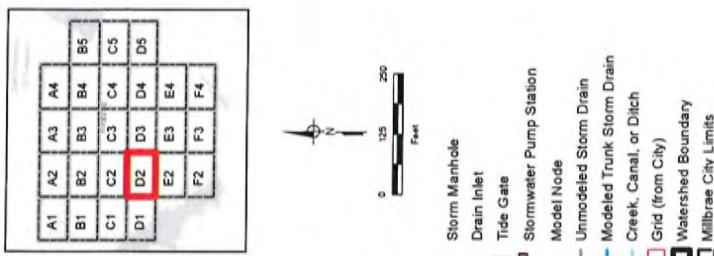
Page C5

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)



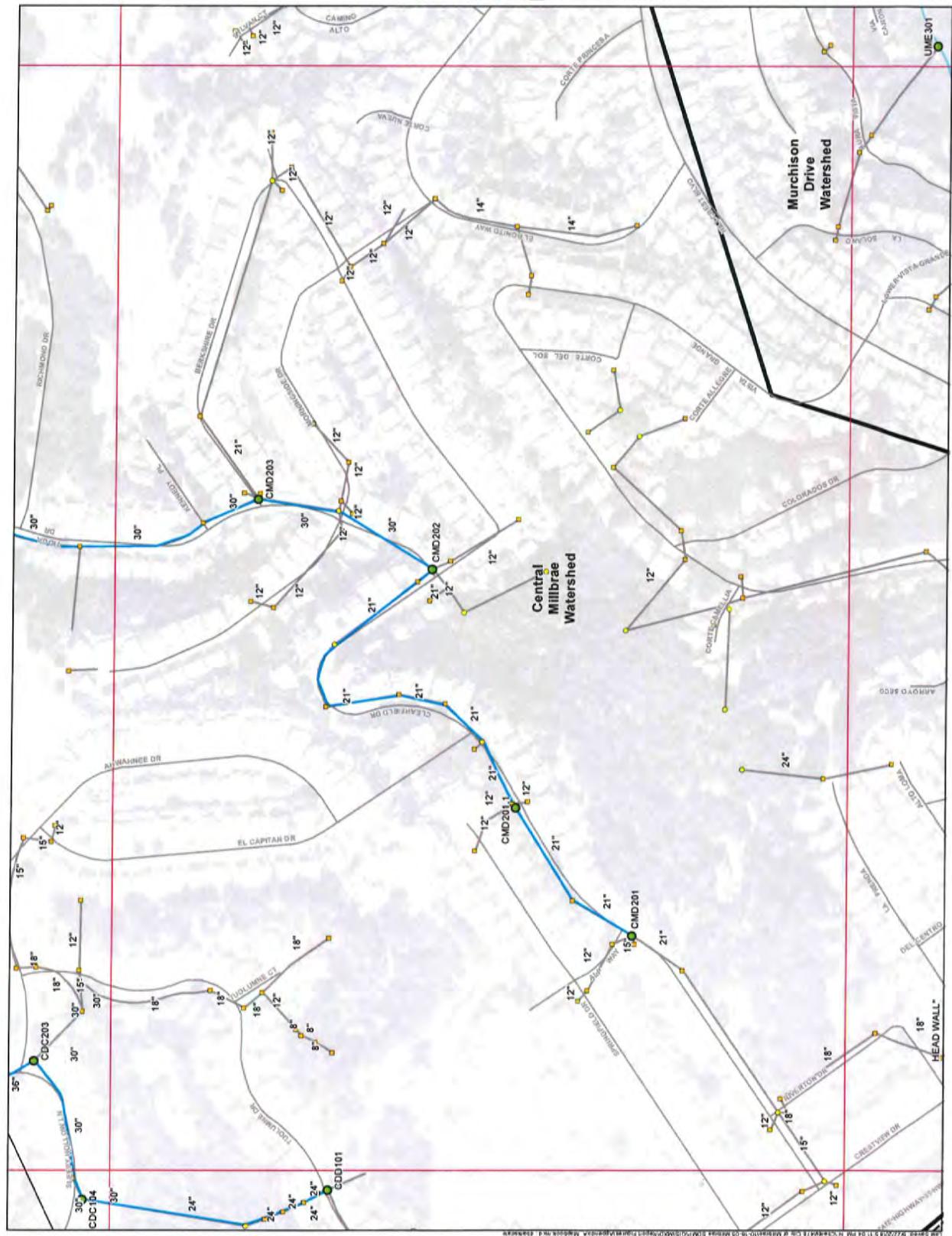
Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.



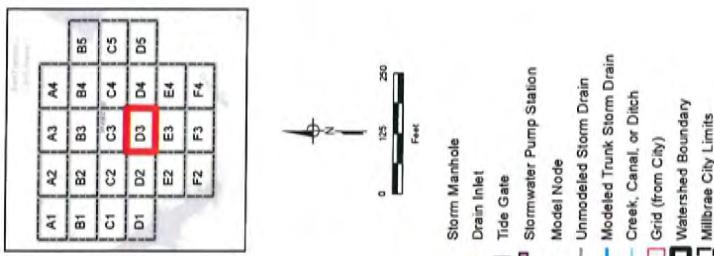
Appendix A
Facility Mapbook for
the City of Millbrae
Page D1

City of Milbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)



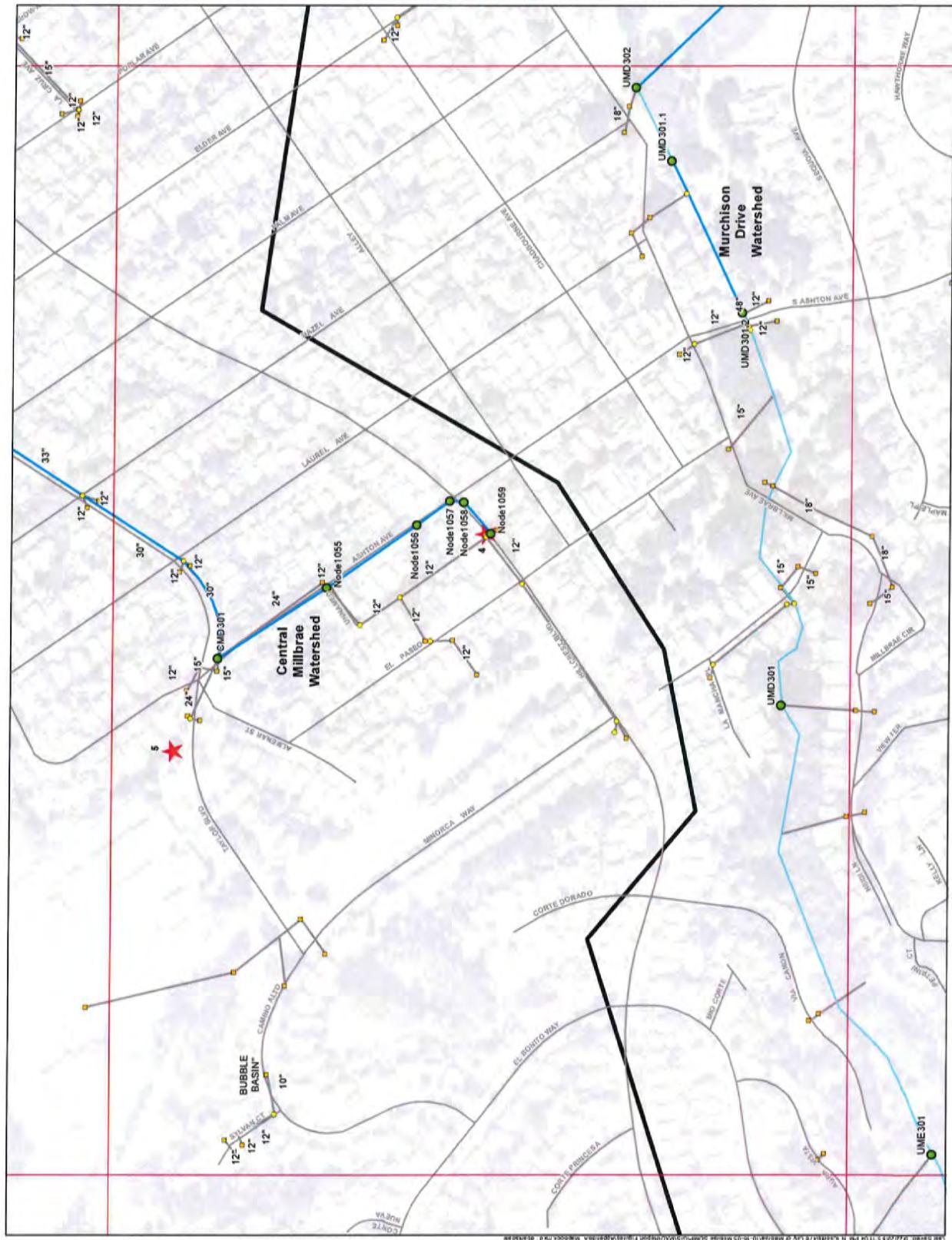
Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

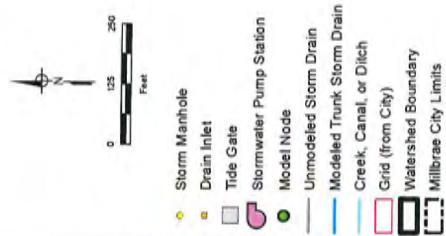
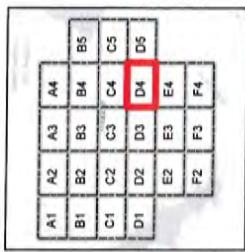


Appendix A

City of Millbrae
Storm Drain Master Plan
Facility Mapbook for
the City of Millbrae
Page D2

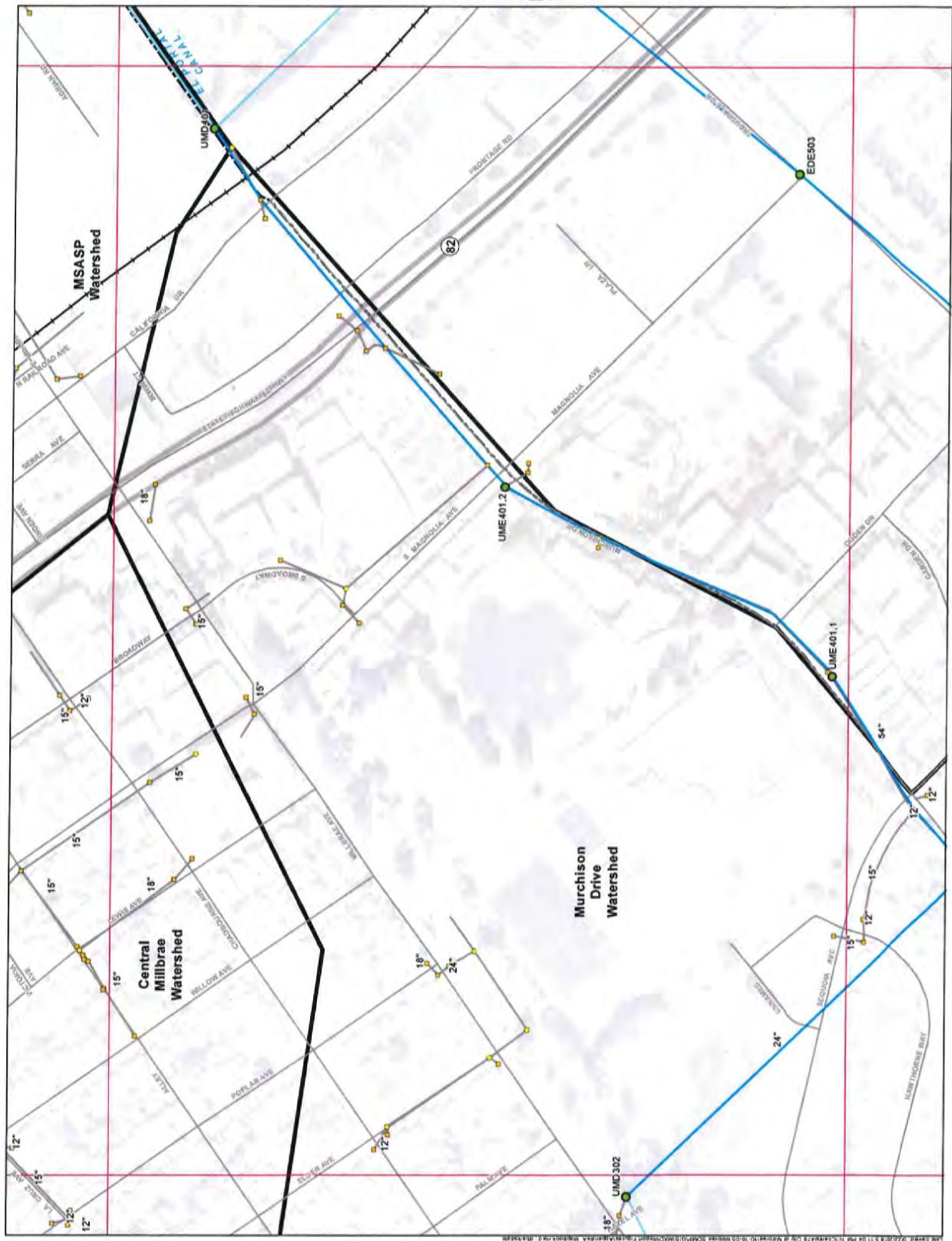
(THIS PAGE LEFT BLANK INTENTIONALLY)

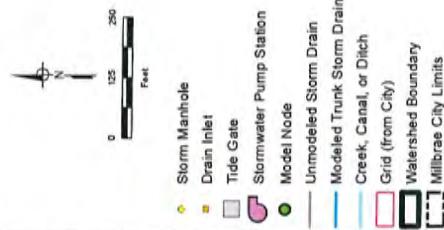
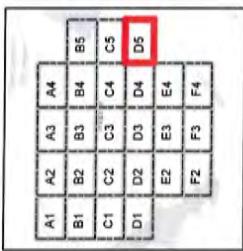

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.



Appendix A

Facility Mapbook for

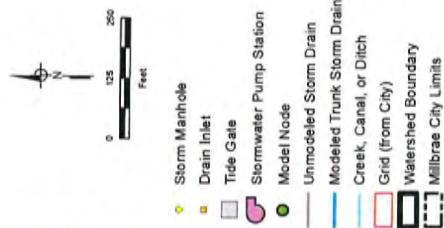
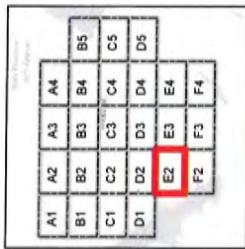
City of Millbrae
Storm Drain Master Plan


(THIS PAGE LEFT BLANK INTENTIONALLY)

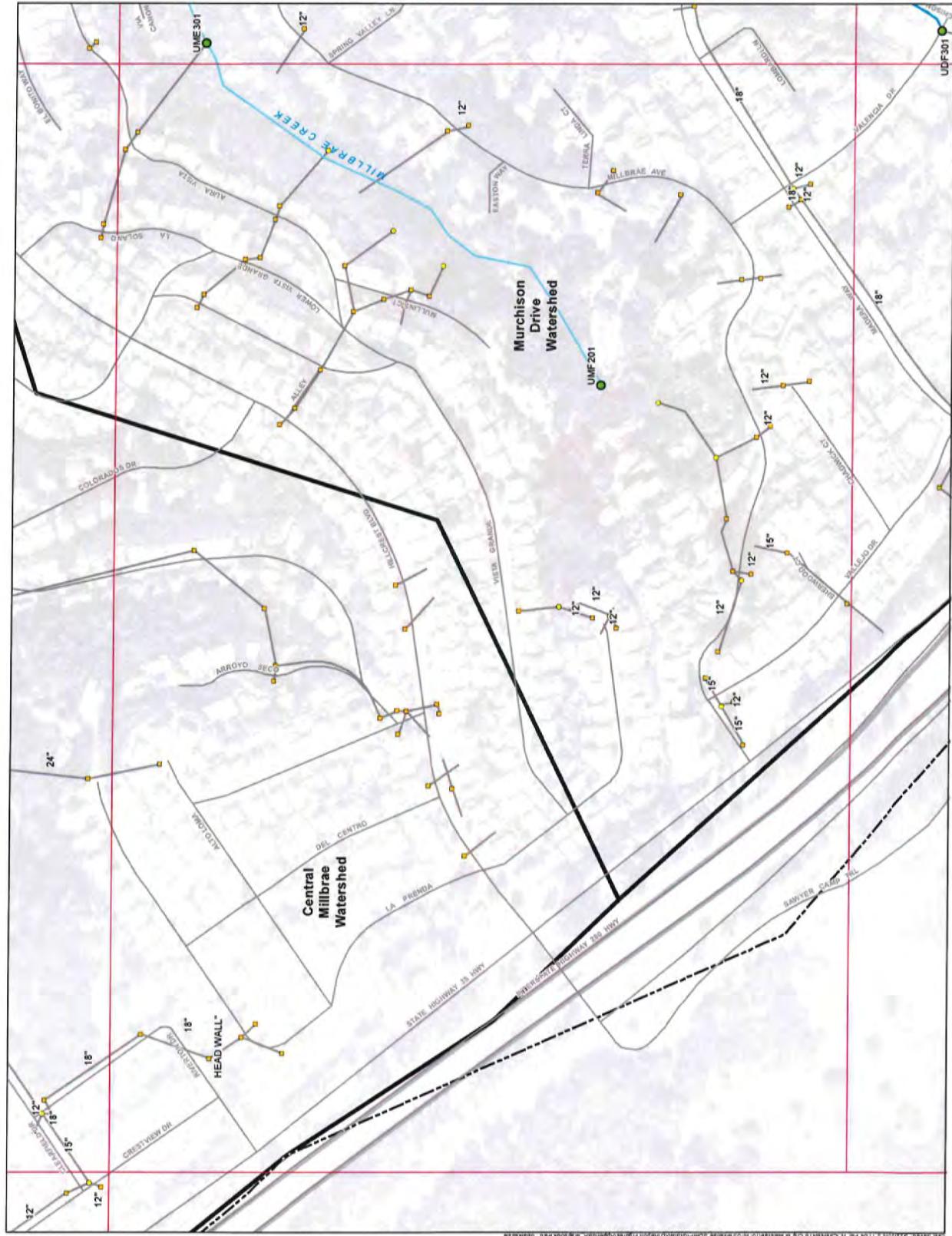


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

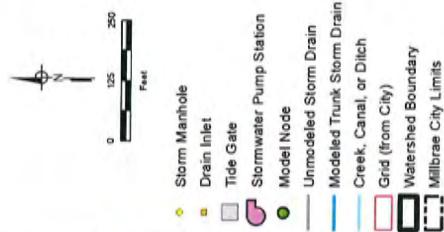
Appendix A
Facility Mapbook for
the City of Millbrae
Page D4

(THIS PAGE LEFT BLANK INTENTIONALLY)

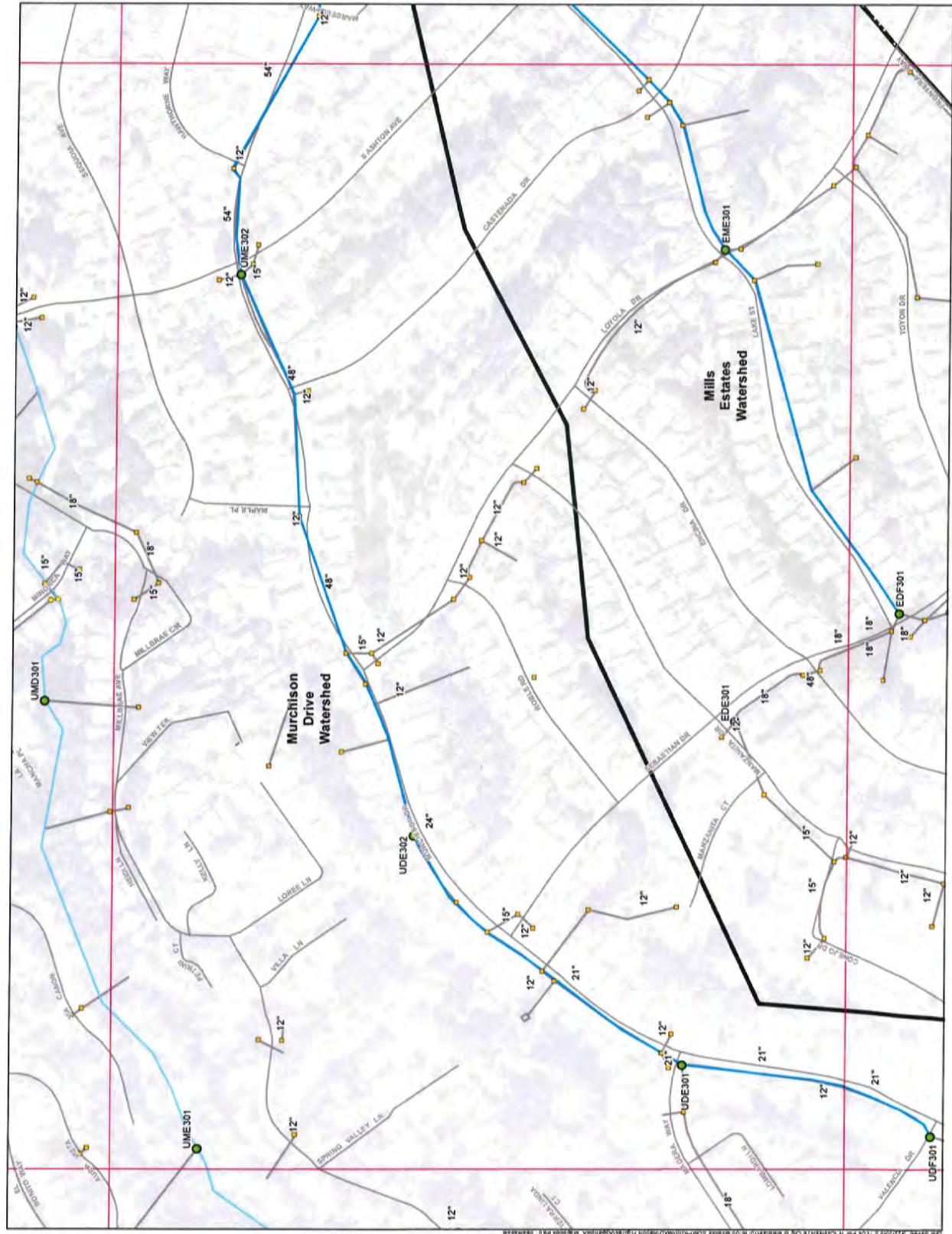


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

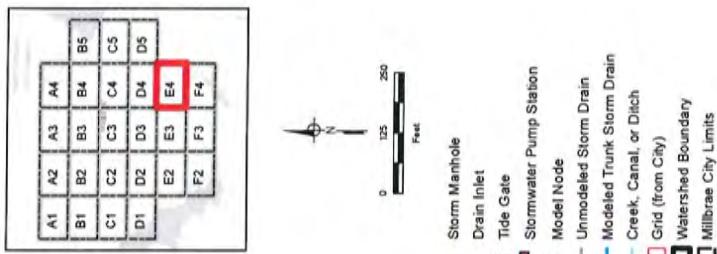
Appendix A
Facility Mapbook for
the City of Millbrae
Page D5
City of Millbrae
Storm Drain Master Plan


(THIS PAGE LEFT BLANK INTENTIONALLY)


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

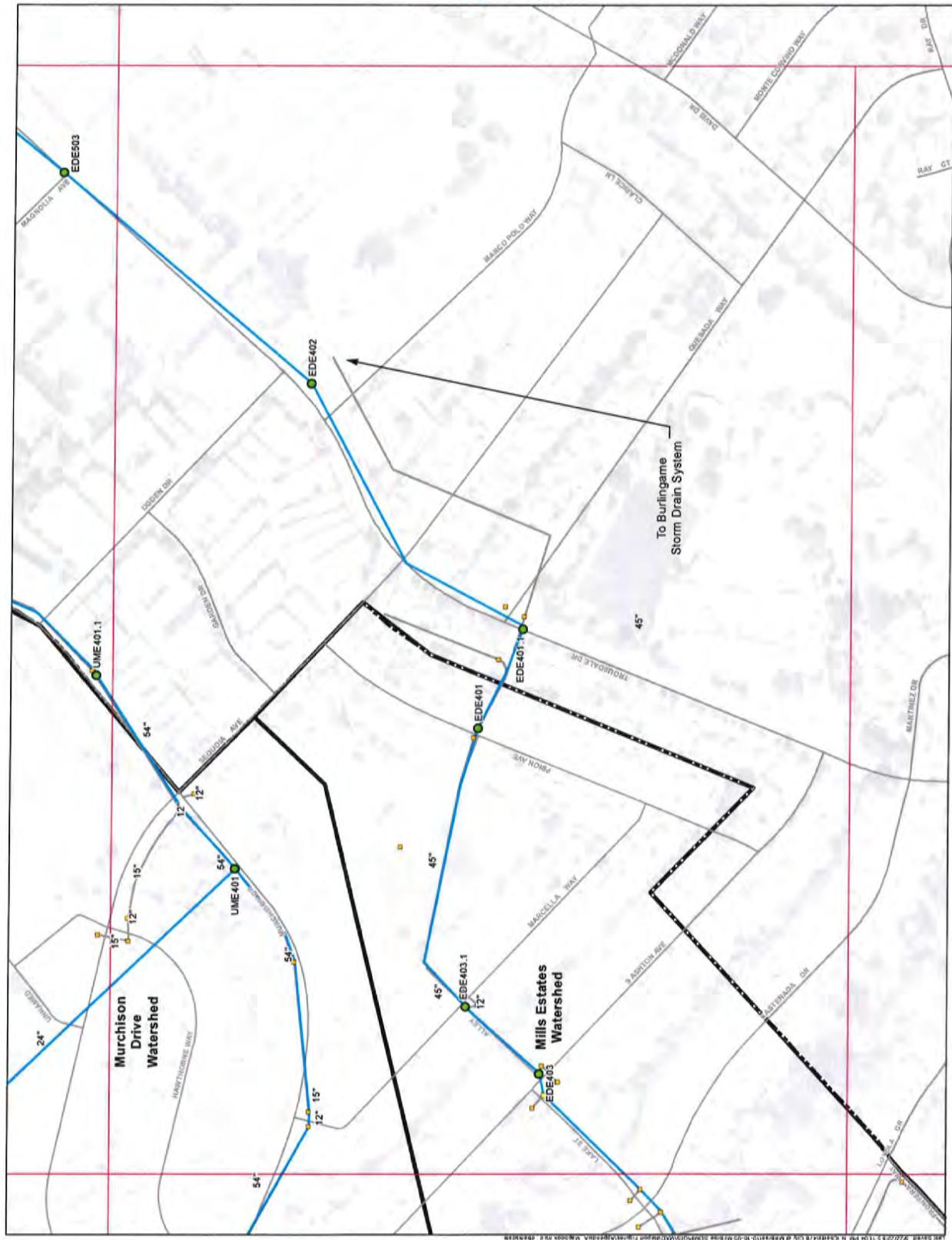
WEST YOST
ASSOCIATES
Appendix A
**Facility Mapbook for
the City of Millbrae**
Page E2
City of Millbrae
Storm Drain Master Plan

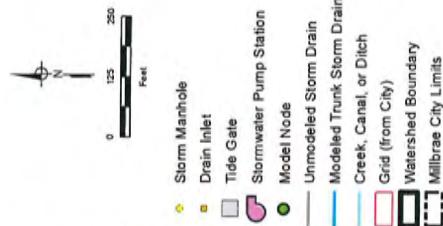
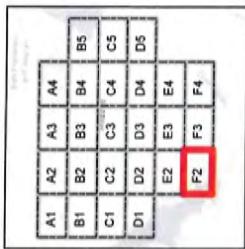

(THIS PAGE LEFT BLANK INTENTIONALLY)


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

Appendix A
Facility Mapbook for
the City of Millbrae
Page E3
 City of Millbrae
 Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)


Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

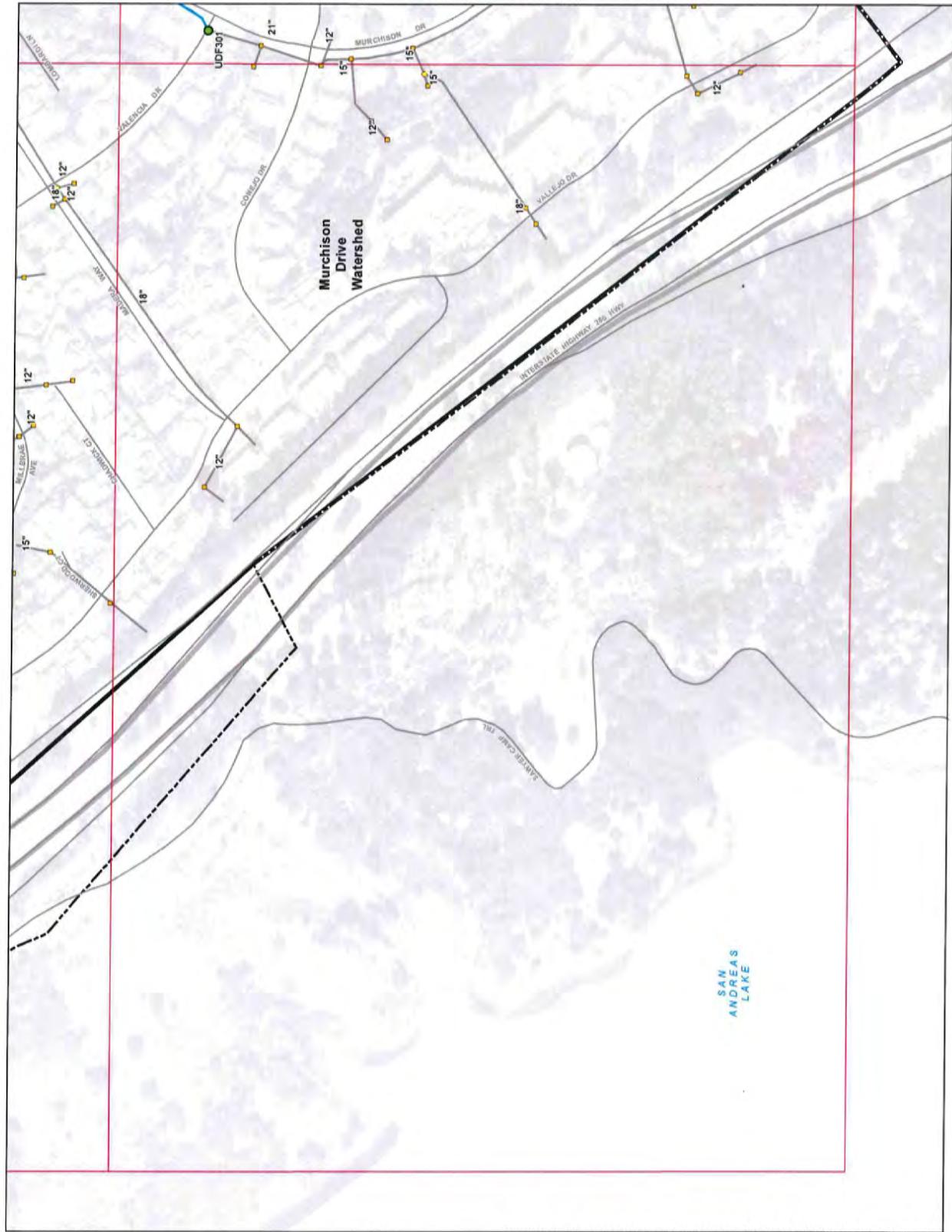


Appendix A

Facility Mapbook for
the City of Millbrae
Page E4

City of Millbrae
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.


Appendix A

Facility Mapbook for the City of Millbrae

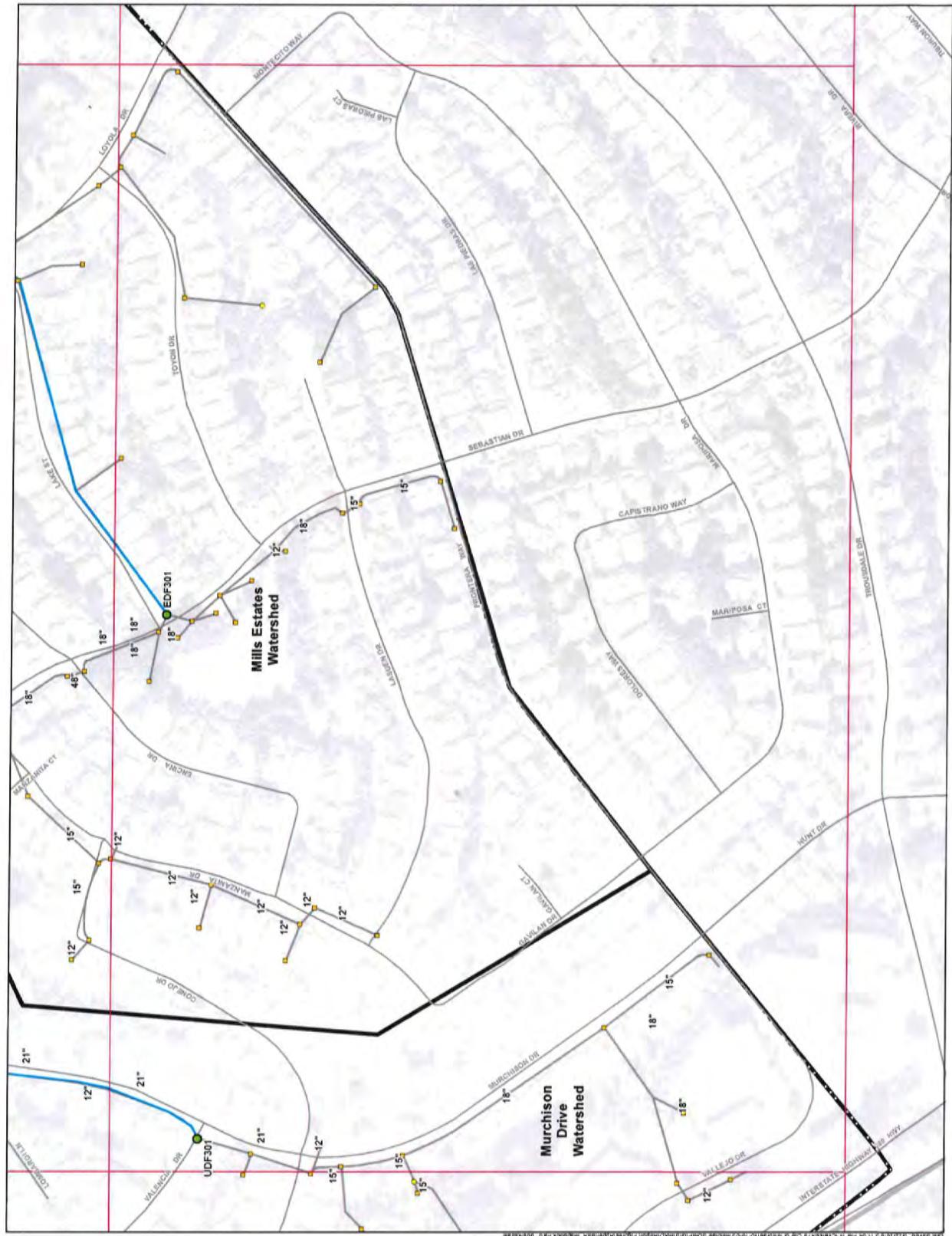

Page F2

City of Millbrae

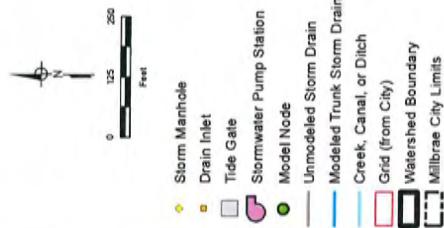
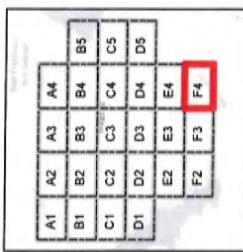
Storm Drain Master Plan

(THIS PAGE LEFT BLANK INTENTIONALLY)

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

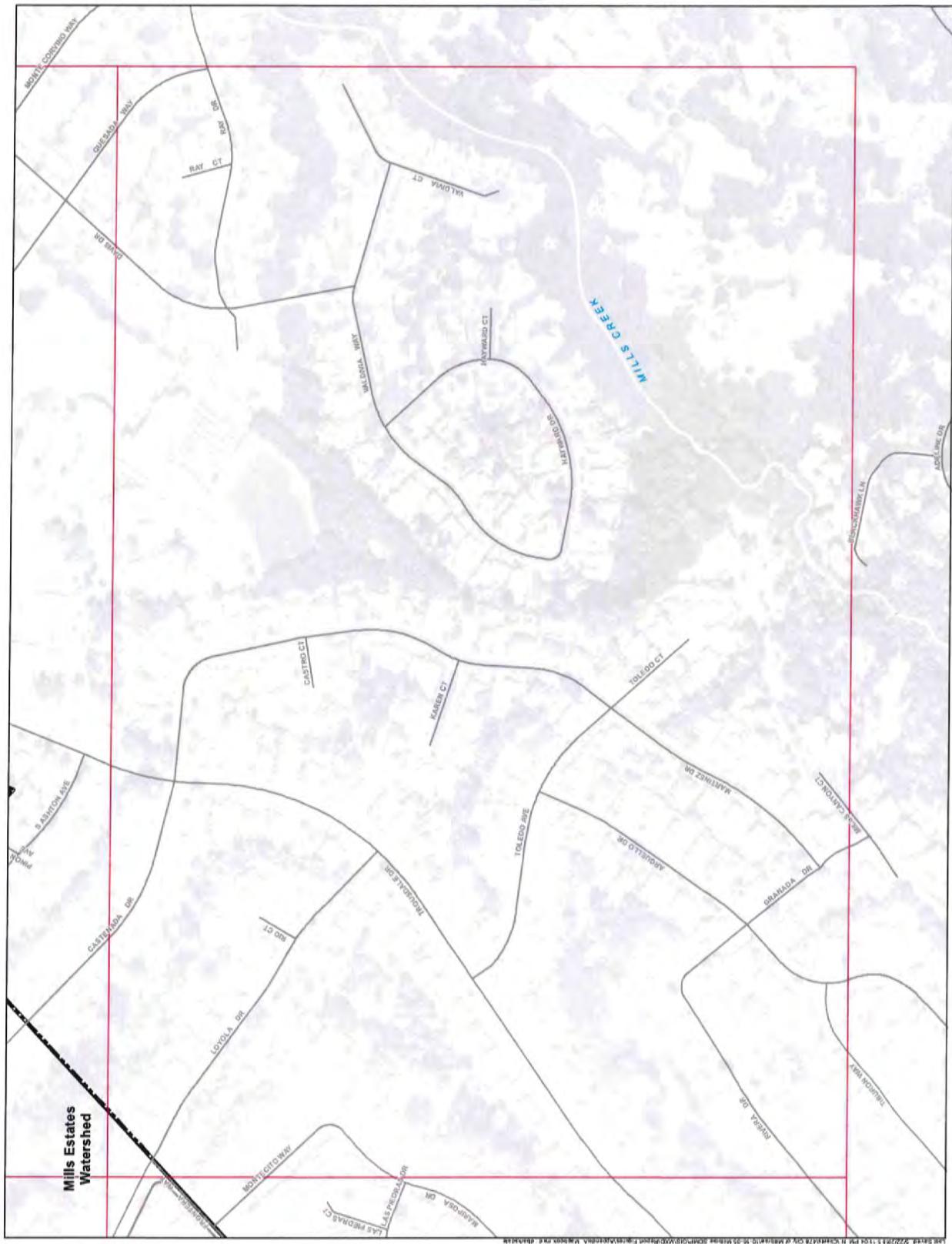


Appendix A



Facility Mapbook for the City of Millbrae

Page F3

City of Millbrae
Storm Drain Master Plan


(THIS PAGE LEFT BLANK INTENTIONALLY)

Note: Figure based on AutoCAD files received from the City adjusted to fit GIS mapping and field verified points. Not all storm drain mapping has been verified and data may not be accurate.

Appendix A Facility Mapbook for the City of Millbrae Page F4

(THIS PAGE LEFT BLANK INTENTIONALLY)

APPENDIX B

Rainfall Depths by Catchment

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix B-1. Existing Model Catchment Inputs and Runoff Results

Appendix B-1. Existing Model Catchment Inputs and Runoff Results	
ND4201	142
ND4202	143
ND4203	144
ND4204	145
ND4205	146
ND4206	147
ND4207	148
ND4208	149
ND4209	150
ND4210	151
ND4211	152
ND4212	153
ND4213	154
ND4214	155
ND4215	156
ND4216	157
ND4217	158
ND4218	159
ND4219	160
ND4220	161
ND4221	162
ND4222	163
ND4223	164
ND4224	165
ND4225	166
ND4226	167
ND4227	168
ND4228	169
ND4229	170
ND4230	171
ND4231	172
ND4232	173
ND4233	174
ND4234	175
ND4235	176
ND4236	177
ND4237	178
ND4238	179
ND4239	180
ND4240	181
ND4241	182
ND4242	183
ND4243	184
ND4244	185
ND4245	186
ND4246	187
ND4247	188
ND4248	189
ND4249	190
ND4250	191
ND4251	192
ND4252	193
ND4253	194
ND4254	195
ND4255	196
ND4256	197
ND4257	198
ND4258	199
ND4259	200
ND4260	201
ND4261	202
ND4262	203
ND4263	204
ND4264	205
ND4265	206
ND4266	207
ND4267	208
ND4268	209
ND4269	210
ND4270	211
ND4271	212
ND4272	213
ND4273	214
ND4274	215
ND4275	216
ND4276	217
ND4277	218
ND4278	219
ND4279	220
ND4280	221
ND4281	222
ND4282	223
ND4283	224
ND4284	225
ND4285	226
ND4286	227
ND4287	228
ND4288	229
ND4289	230
ND4290	231
ND4291	232
ND4292	233
ND4293	234
ND4294	235
ND4295	236
ND4296	237
ND4297	238
ND4298	239
ND4299	240
ND4300	241
ND4301	242
ND4302	243
ND4303	244
ND4304	245
ND4305	246
ND4306	247
ND4307	248
ND4308	249
ND4309	250
ND4310	251
ND4311	252
ND4312	253
ND4313	254
ND4314	255
ND4315	256
ND4316	257
ND4317	258
ND4318	259
ND4319	260
ND4320	261
ND4321	262
ND4322	263
ND4323	264
ND4324	265
ND4325	266
ND4326	267
ND4327	268
ND4328	269
ND4329	270
ND4330	271
ND4331	272
ND4332	273
ND4333	274
ND4334	275
ND4335	276
ND4336	277
ND4337	278
ND4338	279
ND4339	280
ND4340	281
ND4341	282
ND4342	283
ND4343	284
ND4344	285
ND4345	286
ND4346	287
ND4347	288
ND4348	289
ND4349	290
ND4350	291
ND4351	292
ND4352	293
ND4353	294
ND4354	295
ND4355	296
ND4356	297
ND4357	298
ND4358	299
ND4359	300
ND4360	301
ND4361	302
ND4362	303
ND4363	304
ND4364	305
ND4365	306
ND4366	307
ND4367	308
ND4368	309
ND4369	310
ND4370	311
ND4371	312
ND4372	313
ND4373	314
ND4374	315
ND4375	316
ND4376	317
ND4377	318
ND4378	319
ND4379	320
ND4380	321
ND4381	322
ND4382	323
ND4383	324
ND4384	325
ND4385	326
ND4386	327
ND4387	328
ND4388	329
ND4389	330
ND4390	331
ND4391	332
ND4392	333
ND4393	334
ND4394	335
ND4395	336
ND4396	337
ND4397	338
ND4398	339
ND4399	340
ND4400	341
ND4401	342
ND4402	343
ND4403	344
ND4404	345
ND4405	346
ND4406	347
ND4407	348
ND4408	349
ND4409	350
ND4410	351
ND4411	352
ND4412	353
ND4413	354
ND4414	355
ND4415	356
ND4416	357
ND4417	358
ND4418	359
ND4419	360
ND4420	361
ND4421	362
ND4422	363
ND4423	364
ND4424	365
ND4425	366
ND4426	367
ND4427	368
ND4428	369
ND4429	370
ND4430	371
ND4431	372
ND4432	373
ND4433	374
ND4434	375
ND4435	376
ND4436	377
ND4437	378
ND4438	379
ND4439	380
ND4440	381
ND4441	382
ND4442	383
ND4443	384
ND4444	385
ND4445	386
ND4446	387
ND4447	388
ND4448	389
ND4449	390
ND4450	391
ND4451	392
ND4452	393
ND4453	394
ND4454	395
ND4455	396
ND4456	397
ND4457	398
ND4458	399
ND4459	400
ND4460	401
ND4461	402
ND4462	403
ND4463	404
ND4464	405
ND4465	406
ND4466	407
ND4467	408
ND4468	409
ND4469	410
ND4470	411
ND4471	412
ND4472	413
ND4473	414
ND4474	415
ND4475	416
ND4476	417
ND4477	418
ND4478	419
ND4479	420
ND4480	421
ND4481	422
ND4482	423
ND4483	424
ND4484	425
ND4485	426
ND4486	427
ND4487	428
ND4488	429
ND4489	430
ND4490	431
ND4491	432
ND4492	433
ND4493	434
ND4494	435
ND4495	436
ND4496	437
ND4497	438
ND4498	439
ND4499	440
ND4500	441
ND4501	442
ND4502	443
ND4503	444
ND4504	445
ND4505	446
ND4506	447
ND4507	448
ND4508	449
ND4509	450
ND4510	451
ND4511	452
ND4512	453
ND4513	454
ND4514	455
ND4515	456
ND4516	457
ND4517	458
ND4518	459
ND4519	460
ND4520	461
ND4521	462
ND4522	463
ND4523	464
ND4524	465
ND4525	466
ND4526	467
ND4527	468
ND4528	469
ND4529	470
ND4530	471
ND4531	472
ND4532	473
ND4533	474
ND4534	475
ND4535	476
ND4536	477
ND4537	478
ND4538	479
ND4539	480
ND4540	481
ND4541	482
ND4542	483
ND4543	484
ND4544	485
ND4545	486
ND4546	487
ND4547	488
ND4548	489
ND4549	490
ND4550	491
ND4551	492
ND4552	493
ND4553	494
ND4554	495
ND4555	496
ND4556	497
ND4557	498
ND4558	499
ND4559	500
ND4560	501
ND4561	502
ND4562	503
ND4563	504
ND4564	505
ND4565	506
ND4566	507
ND4567	508
ND4568	509
ND4569	510
ND4570	511
ND4571	512
ND4572	513
ND4573	514
ND4574	515
ND4575	516
ND4576	517
ND4577	518
ND4578	519
ND4579	520
ND4580	521
ND4581	522
ND4582	523
ND4583	524
ND4584	525
ND4585	526
ND4586	527
ND4587	528
ND4588	529
ND4589	530
ND4590	531
ND4591	532
ND4592	533
ND4593	534
ND4594	535
ND4595	536
ND4596	537
ND4597	538
ND4598	539
ND4599	540
ND4600	541
ND4601	542
ND4602	543
ND4603	544
ND4604	545
ND4605	546
ND4606	547
ND4607	548
ND4608	549
ND4609	550
ND4610	551
ND4611	552
ND4612	553
ND4613	554
ND4614	555
ND4615	556
ND4616	557
ND4617	558
ND4618	559
ND4619	560
ND4620	561
ND4621	562
ND4622	563
ND4623	564
ND4624	565
ND4625	566
ND4626	567
ND4627	568
ND4628	569
ND4629	570
ND4630	571
ND4631	572
ND4632	573
ND4633	574
ND4634	575
ND4635	576
ND4636	577
ND4637	578
ND4638	579
ND4639	580
ND4640	581
ND4641	582
ND4642	583
ND4643	584
ND4644	585
ND4645	586
ND4646	587
ND4647	588
ND4648	589
ND4649	590
ND4650	591
ND4651	592
ND4652	593
ND4653	594
ND4654	595
ND4655	596
ND4656	597
ND4657	598
ND4658	599
ND4659	600
ND4660	601
ND4661	602
ND4662	603
ND4663	604
ND4664	605
ND4665	606
ND4666	607
ND4667	608
ND4668	609
ND4669	610
ND4670	611
ND4671	612
ND4672	613
ND4673	614
ND4674	615
ND4675	616
ND4676	617
ND4677	618
ND4678	619
ND4679	620
ND4680	621
ND4681	622
ND4682	623
ND4683	624
ND4684	625
ND4685	626
ND4686	627
ND4687	628
ND4688	629
ND4689	630
ND4690	631
ND4691	632
ND4692	633
ND4693	634
ND4694	635
ND4695	636
ND4696	637
ND4697	638
ND4698	639
ND4699	640
ND4700	641
ND4701	642
ND4702	643
ND4703	644
ND4704	645
ND4705	646
ND4706	647
ND4707	648
ND4708	649
ND4709	650
ND4710	651
ND4711	652
ND4712	653
ND4713	654
ND4714	655
ND4715	656
ND4716	657
ND4717	658
ND4718	659
ND4719	660
ND4720	661
ND4721	662
ND4722	663
ND4723	664
ND4724	665
ND4725	666
ND4726	667
ND4727	668
ND4728	669
ND4729	670
ND4730	671
ND4731	672
ND4732	673
ND4733	674
ND4734	675
ND4735	676
ND4736	677
ND4737	678
ND4738	679
ND4739	680
ND4740	681
ND4741	682
ND4742	683
ND4743	684
ND4744	685
ND4745	686
ND4746	687
ND4747	688
ND4748	689
ND4749	690
ND4750	691

(THIS PAGE LEFT BLANK INTENTIONALLY)

APPENDIX C

XPSWMM Hydraulic Model Inputs

- Existing Link Inputs 10-year and 100-year
- Improvements Inputs 10-year
- Improvements Inputs 100-year
- Inputs for Nodes

(THIS PAGE LEFT BLANK INTENTIONALLY)

C1

Existing Link Inputs 10-year and 100-year

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-1. Existing Link Input Data

Link ID	Link Type	Link Name	Length	Existing Input Length (ft)	Existing Input Elevation (ft)	Current Pipe diameter (ft)	Current Pipe material	Current Pipe thickness (in.)	Current Pipe weight (lb/ft)	Link Elevation (ft)	Link Weight (lb/ft)
CMD303-CMD302	Circular	2	0	279	105.7	82.5	8	0.014			
CMD302-CMD301	Circular	2	0	360	82.5	75.5	2	0.014			
CMD302-CMD301	Natural	0	0	360	91.6	82.4	3	0.015	0.035	0.035	
GM304-CMD303	Circular	2	0	126	108.8	105.7	2	0.014			
CMD305-CMD304	Circular	2	0	36	109.8	108.8	3	0.014			
CMD306-CMD305	Circular	2	0	122	113.6	109.8	3	0.014			
NIC501-NOC501	Rectangular	8	15	300	0.8	0.0	0	0.014			
NIC501-NOC501	Rectangular	8	15	300	0.8	0.0	0	0.014			
NIC501-NOC501	Rectangular	8	15	300	0.8	0.0	0	0.014			
NIC501-NOC501	Rectangular	8	15	300	0.8	0.0	0	0.014			
CD8101-CMB101	Circular	1.5	0	431	313.7	301.6	3	0.014			
CD8101-CMB101	Natural	0.05	0	365	319.4	306.7	3	0.015	0.035	0.035	
CDC101-CDC103	Circular	2.25	0	706	264.5	245.7	5	0.014			
CDC101-CDC103	Natural	0	0	706	266.6	249.9	8	0.015	0.035	0.035	
CDC102-CMC104	Circular	2.75	0	566	262.4	230.6	6	0.014			
CDC102-CMC104	Natural	0	0	743	271.8	240.4	4	0.015	0.035	0.035	
CDC104-CDC203	Circular	2.5	0	410	229.1	219.1	2	0.014			
CDC103-CMC102	Circular	2.5	0	157	245.7	241.6	3	0.014			
CDC103-CMC102	Natural	0.05	0	157	249.9	247.1	2	0.015	0.035	0.035	
CDC201-CDC202	Trapezoidal	1	2	667	239.8	189.7	8	0.014			
CDC202-CDC205	Circular	1.25	0	94	189.7	160.7	31	0.014			
CDC202-CDC205	Natural	0.05	0	80	193.8	169.0	31	0.015	0.035	0.035	
CDC203-CDC206	Circular	3	0	171	216.9	215.1	1	0.014			
CDC203-CDC206	Natural	0.05	0	171	221.6	222.4	0	0.015	0.035	0.035	
CDC206-CMC200	Circular	3	0	163	215.1	213.4	1	0.014			
CDC206-CMC201	Natural	0.5	0	163	222.4	223.1	0	0.015	0.035	0.035	
CDC204-CDC207	Circular	2.5	0	101	168.1	150.1	18	0.014			
CDC204-CDC207	Natural	0.05	0	101	173.2	156.8	16	0.015	0.035	0.035	
CDC207-CMC204	Circular	2.5	0	155	160.1	122.5	18	0.014			
CDC207-CMC204	Natural	0	0	155	156.8	130.5	17	0.015	0.035	0.035	
CDC205-CMC203	Natural	0	0	2679	160.7	75.0	3	0.05	0.035	0.035	
CDC301-CMC310	Circular	4	0	435	73.8	73.2	0	0.014			
CDC301-CMC310	Natural	0	0	435	61.5	82.5	0	0.015	0.035	0.035	
CDC302-CDC305	Circular	1.25	0	181	85.7	79.6	3	0.014			
CDC302-CDC305	Natural	0.05	0	181	90.0	83.5	4	0.015	0.035	0.035	
CDC305-CDC306	Natural	0.05	0	645	83.5	67.0	3	0.015	0.035	0.035	
CDC305-CDC306	Circular	1.25	0	464	79.6	63.9	3	0.014			
CDC303-CDC304	Circular	1.25	0	172	63.9	61.1	2	0.014			
CDC303-CDC304	Natural	0.05	0	172	67.0	60.1	1	0.015	0.035	0.035	
CDC304-CMC301	Circular	4	0	967	61.1	37.3	2	0.014			
CDC304-CMC301	Natural	0	0	967	66.1	46.7	2	0.015	0.035	0.035	
CDC401-CMC401	Rectangular	4	5.7	381	14.2	13.8	0	0.014			
CDC401-CMC403	Rectangular	4	5.7	381	14.2	13.8	0	0.014			
CDC401-CMC403	Natural	0	0	381	20.2	20.6	0	0.015	0.035	0.035	
CDC402-CJC401	Circular	1.5	0	292	1.0	-2.2	1	0.014			
CDC401-CDC104	Circular	2	0	691	306.0	229.1	24	0.014			
CJA301-NOA303	Circular	3.5	0	444	0.9	0.1	0	0.014			
CM8101-CDC201	Circular	1.75	0	915	301.6	239.8	7	0.014			
CM301-CML302	Circular	3.5	0	976	14.1	3.0	1	0.014			
CM302-CJA301	Circular	3.5	0	1087	3.0	0.9	0	0.014			
CMC102-CMC104	Circular	2.5	0	274	241.6	230.8	4	0.014			
CMC102-CMC104	Natural	0	0	269	247.1	240.4	2	0.015	0.035	0.035	
CMC103-CDC102	Circular	2.25	0	591	314.3	262.4	6	0.014			
CMC104-CMC201	Circular	3.5	0	718	230.6	213.4	2	0.014			
CMC104-CMC201	Natural	0.05	0	800	240.4	223.1	2	0.015	0.035	0.035	
CMC201-CDC205	Circular	3.5	0	505	213.4	160.7	10	0.014			
CMC201-CDC205	Natural	0	0	505	223.1	169.0	11	0.015	0.035	0.035	
CMC203-CDC301	Circular	4	0	138	75.0	73.8	1	0.014			
CMC203-CDC301	Natural	0	0	138	83.0	81.5	1	0.015	0.035	0.035	
CMC203-CJC301	Circular	3.5	0	766	75.0	37.6	5	0.014			
CMC204-CDC208	Circular	3	0	778	122.5	101.0	3	0.014			
CMC204-CDC208	Natural	0.05	0	1010	130.5	113.0	2	0.015	0.035	0.035	
CC208-CMC308	Circular	3	0	1160	101.0	66.5	3	0.014			
CC208-CMC308	Natural	0	0	1086	113.0	66.5	2	0.015	0.035	0.035	
CMC301-CDC308	Circular	5	0	243	37.3	34.6	1	0.014			
CMC301-CDC308	Natural	0.05	0	242	46.7	44.0	1	0.015	0.035	0.035	
CDC306-CMC406	Circular	5	0	2606	34.6	5.9	1	0.014			
CMC302-CMC401	Circular	4	0	1112	30.6	19.8	1	0.014			
CMC302-CMC401	Natural	0.05	0	1136	37.8	25.3	1	0.015	0.035	0.035	
CMC303-CMC304	Circular	3	0	594	33.6	20.9	2	0.014			
CMC303-CMC304	Natural	0.05	0	594	39.0	30.8	1	0.015	0.035	0.035	
CMC304-CMC401	Circular	3.25	0	441	20.9	18.6	0	0.014			
CMC304-CMC401	Natural	0	0	441	30.8	25.3	1	0.015	0.035	0.035	
CMC306-CMC309	Circular	3.5	0	905	68.5	51.2	2	0.014			
CMC306-CMC309	Natural	0	0	905	68.5	60.4	3	0.015	0.035	0.035	
CMC309-CMC302	Circular	3.5	0	1145	51.2	30.8	2	0.014			
CMC309-CMC302	Natural	0	0	1042	60.4	37.3	2	0.015	0.035	0.035	
CMC310-CDC304	Circular	4	0	833	73.2	61.1	1	0.014			
CJC301-CMJ301	Circular	3.5	0	1974	37.6	14.1	1	0.014			
CJC401-CDC401	Rectangular	4	5.7	524	19.6	14.2	1	0.014			
CJC401-CDC401	Rectangular	4	5.7	524	19.6	14.2	1	0.014			
CJC402-CMC403	Circular	2	0	447	22.7	13.8	2	0.014			
CJC402-CMC403	Natural	0	0	447	31.4	20.6	2	0.015	0.035	0.035	
CJC403-CMC407	Rectangular	4	5.7	1045	13.8	5.4	1	0.014			
CJC403-CMC407	Rectangular	4	5.7	1045	13.8	5.4	1	0.014			
CJC404-MJC401	Natural	0	0	1134	4.3	1.9	0	0.035	0.035	0.035	
MIC401-MOC401	Rectangular	6	15	76	1.6	1.7	0	0.035	0.035	0.035	
MOC401-NIC501	Natural	0	0	415	1.7	0.6	0	0.035	0.035	0.035	
CMC405-CMC402	Circular	1.75	0	395	28.5	22.7	1	0.014			
CMC405-CMC402	Natural	0.05	0	395	40.1	31.4	2	0.015	0.035	0.035	
CMC406-CMC404	Circular	5.5	0	1341	5.8	4.3	0	0.014			
CMC407-CMC404	Circular	4.5	5.7	142	5.4	4.3	1	0.014			
CJC401-MPC502	Circular	2.75	0	1424	-2.2	-16.0	1	0.014			
CMD201-CDD201	Circular	1.75	0	500	493.0	422.7	14	0.014			
CMD201-CDD201	Natural	0	0	500	500.3	438.4	12	0.015	0.035	0.035	
CDD201-CMD202	Circular	1.75	0	1175	422.7	257.3	14	0.014			
CMD202-CMD203	Circular	2.5	0	523	257.3	235.6	4	0.014			
CMD202-CMD203	Natural	0.05	0	523	292.3	243.8	9	0.015	0.035	0.035	
CMD203-CDC204	Circular	2.5	0	809	235.8	166.1	8	0.014			
CMD203-CDC204	Natural	0	0	809	243.8	173.2	9	0.015	0.035	0.035	
CMD301-CMC303	Circular	2.5	0	1584	72.9	33.8	2	0.014			
CMD301-CMC303	Natural	0	0	1594	62.4	39.0	3	0.015	0.035	0.035	
CB0401-CBA402	Natural	0	0	1494	0.0	-13.5	0	0.04	0.05	0.05	
CB0402-MPC501	Natural	0	0	500	-13.5	-18.0	0	0.04	0.05	0.05	
ED8301-EDF301	Circular	1.5	0	581	385.8	359.4	5	0.014			
ED8301-EDF301	Natural	0.05	0	580	394.3	367.9	6	0.015	0.035	0.035	
ED8401-EDF402	Circular	3.75	0	245	85.7	77.5	3	0.014			
ED8401-EDF402	Natural	0	0	246	88.6	81.8	3	0.015	0.035	0.035	
EME402-EME403	Natural	0	0	913	81.8	57.0	3	0.015	0.035	0.035	
EME402-EME403	Circular	3.75	0	913	77.5	52.0	3	0.014			
EME403-EME404	Natural	0.05	0	770	52.0	34.6	2	0.014			
EME403-EME404	Circular	3.75	0	766	57.0	41.0	2	0.015	0.035</td		

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-1. Existing Link Input Data

Link Name	Diameter	Length	Width	Depth	Flow	Flow	Flow	Flow	Flow
EDF501-UMD401	Trapezoidal	6	10	236	7.0	5.9	0	0.014	
EDF301-EME301	Circular	1.7	0	1127	358.4	201.6	14	0.014	
EDF301-EME301	Natural	0	0	1127	367.9	210.1	14	0.015	0.035
EME301-EDF401	Circular	3.75	0	944	201.6	110.6	10	0.014	
MIC501-MIC501	Natural	0	10	629	0.0	-3.2	1	0.05	0.035
MIC501-MOC50	Circular	3	10	236	-3.2	-4.5	1	0.05	0.035
MOC501-MPC502	Natural	0	10	1416	-4.5	-11.8	1	0.05	0.035
NDA201-NMA201	Circular	4	0	383	31.2	30.5	0	0.014	
NDA201-NMA201	Natural	0.05	0	383	36.1	35.7	0	0.03	0.03
NDA301-NDA302	Circular	2	0	229	35.7	39.7	3	0.014	
NDA301-NDA302	Natural	0	0	212	38.6	36.0	1	0.015	0.035
NDA302-NMA302	Natural	0	0	670	38.6	27.9	1	0.015	0.035
NDA302-NMA302	Circular	3	0	670	29.7	12.3	3	0.014	
NDB201-NMA201	Circular	2	0	1383	77.3	33.1	3	0.014	
NDB201-NMA201	Natural	0	0	1383	85.6	36.7	4	0.015	0.035
NMA201-NMA304	Circular	4	0	789	30.5	17.8	2	0.014	
NMA201-NMA304	Natural	0.05	0	730	35.7	25.1	1	0.03	0.03
NIA201-NOA201	Circular	3.5	0	203	73.0	68.0	2	0.014	
NIA202-ND401	Circular	3.5	0	956	61.2	31.2	2	0.014	
NIA301-NMA302	Circular	3.5	0	556	16.3	12.3	1	0.014	
NMA302-NMA303	Circular	3.5	0	170	12.3	8.0	3	0.014	
NMA303-NOA301	Rectangular	5	6	1086	8.0	3.0	0	0.014	
NMA304-NMA301	Rectangular	2	5	145	17.8	10.3	1	0.014	
NMA304-SDA301	Natural	0	0	1056	17.8	11.3	1	0.015	0.035
NOA201-NOA202	Natural	0	0	75	77.0	75.0	3	0.05	0.035
NOA202-NIA201	Natural	0	0	112	75.0	73.0	2	0.05	0.035
NOA203-NIA202	Natural	0	0	676	68.0	51.2	2	0.05	0.035
NOA301-NOA301	Natural	0	0	713	3.0	0.5	0	0.05	0.035
NOA302-NOA301	Natural	0	0	44	0.5	0.5	0	0.05	0.035
NIAB301-NIA305	Rectangular	4	8	85	0.5	0.4	0	0.05	0.035
NOA305-NOA304	Natural	0	0	458	0.4	0.3	0	0.05	0.035
NOA304-COB401	Natural	0	0	2072	0.1	0.0	0	0.05	0.035
NOA304-NOA303	Natural	0	0	475	0.3	0.1	0	0.05	0.035
NDB202-NCB202	Natural	0	0	407	115.0	92.0	6	0.025	0.025
NDB202-NCB201	Natural	0	0	646	92.0	77.0	2	0.05	0.035
NOC502-NCC500	Circular	8	0	80	0.6	-2.0	4	0.015	
NOC502-NCC500	Circular	6	0	90	0.6	-2.0	4	0.015	
NOC502-NOC500	Trapezoidal	1	0	80	9.6	9.5	0	0.035	
NOB501-NQB500	Trapezoidal	1	100	60	10.0	9.9	0	0.036	
NOB501-NQB500	Rectangular	15	15	60	-2.0	-2.0	0	0.015	
NOB501-NQB500	Rectangular	15	15	60	-2.0	-2.0	0	0.015	
SDA301-SJA301	Rectangular	4	4	111	11.3	10.2	1	0.014	
SDA305-SDA302	Natural	0.5	0	80	6.9	6.0	1	0.015	0.035
SDA305-SDA302	Rectangular	4	4	78	2.8	2.0	1	0.014	
SJA301-SDA305	Rectangular	4	4	736	10.2	2.8	1	0.014	
SDA302-SDA301	Rectangular	4	6	115	2.0	1.5	0	0.014	
SDB201-SDB301	Circular	1.5	0	946	97.8	69.5	3	0.014	
SDB301-SDB302	Circular	1.35	0	303	89.5	37.4	6	0.014	
SDB301-SDB302	Natural	0.5	0	302	72.7	41.2	8	0.015	0.035
SDB302-SDB303	Circular	1.5	0	314	37.4	20.0	6	0.014	
SDB303-6MA301	Circular	3	0	1211	20.0	2.6	1	0.014	
SMA301-SCA301	Rectangular	2.4	3.3	224	2.6	1.5	0	0.05	0.035
SOA301-NDA303	Circular	2	15	60	1.5	1.5	0	0	0.6
SOA303-NCA302	Circular	4	0	214	1.5	0.5	0	0	0.014
SOA303-NCA302	Circular	4	0	214	1.5	0.5	0	0	0.014
SOA303-NOA302	Circular	4	0	214	1.5	0.5	0	0	0.014
SOA303-NOA302	Circular	4	0	214	1.5	0.5	0	0	0.014
SOA303-NOA302	Circular	4	0	214	1.5	0.5	0	0	0.014
SOA301-NDA303	0	0	0	0	0.0	0.0	0	0	0
SMB301-SDA303	Circular	1.75	0	441	17.0	12.9	1	0.014	
SMB303-SDA303	Natural	0	0	441	21.5	17.5	1	0.015	0.035
SDA303-SDA304	Natural	0.5	0	63	17.5	16.0	2	0.015	0.035
SDA304-SDA301	Natural	0.5	0	105	17.5	16.0	1	0.015	0.035
SDA303-SDA304	Circular	1.75	0	63	12.9	12.3	1	0.014	
SDA304-SDA301	Circular	1.75	0	105	12.3	11.3	1	0.014	
SDA304-5JA301	Circular	3.5	0	106	12.3	10.2	2	0.014	
UDF301-UDE302	Circular	2	0	861	350.4	248.9	10	0.014	
UDF301-UDE302	Natural	0.05	0	963	354.2	257.2	10	0.015	0.035
UDF302-UME302	Circular	3.7	0	1616	248.9	96.8	9	0.014	
UDF301-UDE301	Circular	1.75	0	731	426.5	360.4	10	0.014	
UDF301-UDE301	Natural	0.05	0	722	431.5	354.2	11	0.015	0.035
UDM301-UDC301	Natural	0	0	1178	136.3	101.4	3	0.04	0.05
UDU301-UDC301	Natural	0	0	213	88.1	81.8	3	0.04	0.05
UDF301-UDC301	Rectangular	3	4	450	101.4	88.1	3	0.04	0.05
UDM302-UME401	Circular	2	0	1283	81.8	74.9	1	0.014	
UDM401-MIC502	Natural	0	0	1985	5.9	2.9	0	0.05	0.035
MIC502-MOC502	Rectangular	8	15	300	2.9	2.5	0	0.05	0.035
MOC502-NDC502	Natural	0	0	1283	2.5	1.0	0	0.05	0.035
UME301-UMD301	Natural	0	0	1384	223.0	198.3	6	0.04	0.05
UME302-UME401	Circular	4.2	0	1520	98.8	65.3	2	0.014	
UME302-UME401	Natural	0	0	1502	109.0	77.5	2	0.015	0.035
UME401-UD401	Circular	4.5	0	665	65.3	51.3	2	0.014	
UME401-UD401	Natural	0.05	0	650	77.5	63.1	2	0.015	0.035
UDD401-UD402	Circular	4.5	0	893	51.3	32.5	2	0.014	
UDD401-UD402	Natural	0	0	893	63.1	42.3	2	0.015	0.035
UDD402-UMD401	Circular	4.5	0	1260	32.5	5.9	2	0.014	
UMF201-UME301	Natural	0	0	1467	363.3	223.0	11	0.04	0.05
NOC501-NOB501	Natural	0	0	1568	0.8	0.0	0	0.05	0.035

(THIS PAGE LEFT BLANK INTENTIONALLY)

C2

Improvements Inputs 10-year

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-2: 10-year improvements Link Input Data

Link Number	Link Type	Link ID	Length (ft)	Section ID	Section Length (ft)	Conduit Pipe Material	Wall Offset (ft)	Wall Offset (ft)	Wall Offset (ft)	Wall Offset (ft)
CMD303-CMD302	Circular	2	0	279	105.7	82.5	8	0.014		
CMD302-CMD301	Circular	2	0	360	82.5	75.5	2	0.014		
CMD302-CMD301	Natural	0	0	360	91.5	82.4	3	0.015	0.035	0.035
CMD304-CMD303	Circular	2	0	126	108.6	105.7	2	0.014		
CMD305-CMD304	Circular	2	0	39	109.6	108.6	3	0.014		
CMD306-CMD305	Circular	2	0	122	113.6	109.6	3	0.014		
NIC501-NOC501	Rectangular	8	15	300	0.6	0.0	0	0.014		
NIC501-NOC501	Rectangular	8	15	300	0.6	0.0	0	0.014		
NIC501-NOC501	Rectangular	8	15	300	0.6	0.0	0	0.014		
NIC501-NOC501	Rectangular	8	15	300	0.6	0.0	0	0.014		
CDR101-CMB101	Circular	1.5	0	431.11	313.7	301.6	3	0.014		
CDR101-CMB101	Natural	0.05	0	365	319.4	306.5	3	0.015	0.035	0.035
CDC101-CDC103	Circular	2.25	0	707.75	284.5	245.7	5	0.014		
CDC101-CDC103	Natural	0	0	707.75	280.6	246.9	6	0.015	0.035	0.035
CD510-CMC104	Circular	2.75	0	555.64	262.4	230.6	6	0.014		
CDC100-CMC104	Natural	0	0	743	371.9	240.4	4	0.015	0.035	0.035
CD510-CMC203	Circular	2.5	0	410.35	220.1	211.2	2	0.014		
CDC103-CMC102	Circular	2.5	0	157.34	345.7	341.6	3	0.014		
CDC103-CMC102	Natural	0.05	0	157.34	249.9	247.1	2	0.015	0.035	0.035
CDC201-CDC202	Trapezoidal	1	2	665.73	226.6	186.7	6	0.014		
CDC202-CDC205	Circular	1.25	6	94.06	188.7	160.7	31	0.014		
CDC302-CDC205	Natural	0.05	0	80	193.8	169.0	31	0.015	0.035	0.035
CDC203-CDC206	Circular	3	6	171.2	216.9	215.1	1	0.014		
CDC303-CDC206	Natural	0.05	0	171.2	221.6	222.4	0	0.015	0.035	0.035
CDC206-CMC201	Circular	3	6	163.02	215.1	213.4	1	0.014		
CDC206-CMC201	Natural	0.5	0	163.02	222.4	221.1	0	0.015	0.035	0.035
CDC204-CDC207	Circular	2.5	9	101.05	168.1	150.1	18	0.014		
CDC204-CDC207	Natural	0.05	0	101	172.2	156.8	16	0.015	0.035	0.035
CDC207-CMC204	Circular	2.5	9	155	160.1	142.5	18	0.014		
CDC207-CMC204	Natural	0	0	155	156.8	155	17	0.015	0.035	0.035
CDC208-CMC203	Natural	0	0	2678.64	160.7	75.0	3	0.05	0.035	0.035
CDC301-CMC310	Circular	4	0	434.54	73.6	73.2	0	0.014		
CDC301-CMC310	Natural	0	0	434.54	81.5	82.5	0	0.015	0.035	0.035
CDC302-CDC305	Circular	1.25	0	180.9	85.7	79.6	3	0.014		
CDC302-CDC305	Natural	0.05	0	180.9	90.0	83.5	4	0.015	0.035	0.035
CDC305-CDC303	Natural	0.05	0	644.62	83.5	67.0	3	0.015	0.035	0.035
CDC303-CDC303	Circular	1.25	0	463.72	79.6	63.9	3	0.014		
CDC303-CDC304	Circular	1.25	0	171.81	63.9	61.1	2	0.014		
CDC303-CDC304	Natural	0.05	0	171.81	67.0	66.1	1	0.015	0.035	0.035
CDC304-CMC301	Circular	4	0	966.01	81.1	73.3	2	0.014		
CDC304-CMC301	Natural	0	0	966.01	66.1	67.7	2	0.015	0.035	0.035
CDC401-CMC403	Rectangular	4	5.7	380.72	14.2	13.6	0	0.014		
CDC401-CMC403	Rectangular	4	5.7	380.72	14.2	13.6	0	0.014		
CDC401-CMC403	Natural	0	0	380.72	20.2	20.6	0	0.015	0.035	0.035
CDC402-CJC401	Circular	2.5	0	201.57	1.6	-2.2	1	0.014		
CDC401-CJC401	Circular	2	0	690.81	396.0	229.1	24	0.014		
CJA301-NOA303	Circular	3.5	0	443.95	0.9	0.1	0	0.014		
CMB101-CDC201	Circular	1.75	0	914.86	301.6	230.8	7	0.014		
CJB301-CJB302	Circular	3.5	0	978.19	14.1	3.0	1	0.014		
CJB301-CJB302	Circular	3.5	0	1056.9	3.0	0.9	0	0.014		
CMC102-CMC104	Circular	2.5	0	273.75	341.6	230.6	4	0.014		
CMC103-CMC104	Natural	0	0	268.77	247.1	240.4	2	0.015	0.035	0.035
CMC103-CMC102	Circular	2.25	0	600.52	314.3	262.4	6	0.014		
CMC104-CMC201	Circular	3.5	0	717.66	230.6	213.4	2	0.014		
CMC104-CMC201	Natural	0.05	0	800	240.4	229.1	2	0.015	0.035	0.035
CMC201-CDC205	Circular	3.5	0	504.94	213.4	160.7	10	0.014		
CMC201-CDC205	Natural	0	0	504.94	223.1	169.0	11	0.015	0.035	0.035
CMC203-CDC301	Circular	4	5	137.77	75.6	73.6	1	0.014		
CMC203-CDC301	Natural	0	0	137.77	83.0	81.5	1	0.015	0.035	0.035
CMD303-CJC301	Circular	3.5	0	769.16	75.0	37.6	5	0.014		
CMD304-CDC208	Circular	3.5	0	778.35	122.5	101.0	3	0.014		
CMD304-CDC208	Natural	0.05	0	1010	130.5	113.0	2	0.015	0.035	0.035
CMD305-CMC306	Circular	3.5	0	1180.16	101.0	66.5	3	0.014		
CMD305-CMC306	Natural	0	0	1086	113.0	86.5	2	0.015	0.035	0.035
CMD301-CMC306	Circular	5	0	242.76	37.3	34.6	1	0.014		
CMD301-CMC306	Natural	0.05	0	242	46.7	44.0	1	0.015	0.035	0.035
CDC306-CMC406	Circular	3	0	2606.43	34.6	5.9	1	0.014		
CDC302-CMC304	Circular	4	5.7	738.11	30.6	20.9	1	0.014		
CDC302-CMC304	Natural	0	0	675	37.8	30.8	1	0.015	0.035	0.035
CDC302-CMC401	Circular	4.5	0	1112.4	30.6	19.6	1	0.014		
CDC302-CMC401	Natural	0.16	0	1136	37.8	25.3	1	0.015	0.035	0.035
CDC303-CMC304	Circular	3	0	564.23	33.8	20.9	2	0.014		
CDC303-CMC304	Natural	0.05	0	564.23	39.0	30.8	1	0.015	0.035	0.035
CDC304-CMC401	Circular	3.25	5.7	440.65	20.9	19.6	0	0.014		
CDC304-CMC401	Natural	0	0	440.65	30.4	25.3	1	0.015	0.035	0.035
CDC304-CMC401	Rectangular	4.5	5.7	440.65	20.9	19.6	0	0.014		
CDC306-CMC309	Circular	4	0	905.03	66.5	51.2	2	0.014		
CDC306-CMC309	Natural	0	0	905.03	86.5	60.4	3	0.015	0.035	0.035
CDC309-CMC302	Circular	4.5	0	1144.97	51.2	30.6	2	0.014		
CDC309-CMC302	Natural	0	0	1041.66	60.4	37.3	2	0.015	0.035	0.035
CDC310-CDC304	Circular	4	0	632.76	73.2	61.1	1	0.014		
CJC301-CJB301	Circular	3.5	0	1973.76	37.6	14.1	1	0.014		
CJC312-CMD301	Circular	2	0	1045.76	78.5	72.9	1	0.014		
CDC401-CDC401	Rectangular	4	5.7	524.42	19.6	14.2	1	0.014		
CDC401-CDC401	Rectangular	4	5.7	524.42	19.6	14.2	1	0.014		
CDC402-CMC403	Circular	2	0	446.6	22.7	13.8	2	0.014		
CDC402-CMC403	Natural	0	0	446.6	31.4	20.6	2	0.015	0.035	0.035
CDC403-CMC407	Rectangular	4	5.7	1045.07	13.6	5.4	1	0.014		
CDC403-CMC407	Rectangular	4	5.7	1045.07	13.6	5.4	1	0.014		
CDC404-MIC401	Natural	0	0	1133.81	43	19	0	0.035	0.035	0.035
MIC401-MIC401	Rectangular	8	15	76	1.9	1.7	0	0.035	0.035	0.035
MDC401-NIC501	Natural	0	0	415	1.7	0.8	0	0.035	0.035	0.035
CMD405-CMC402	Circular	1.75	0	394.95	26.5	22.7	1	0.014		
CMD405-CMC402	Natural	0.05	0	394.95	26.5	23.6	1	0.015	0.035	0.035
CMD406-CMC404	Circular	5.5	0	1341.37	5.8	4.3	0	0.014		
CMD407-CMC404	Circular	4.5	5.7	142.28	5.4	4.3	1	0.014		
CJC401-MPC503	Circular	2.75	0	1424.09	-2.2	-18.0	1	0.014		
CMD201-CB201	Circular	1.75	0	500	493.0	422.7	14	0.014		
CMD201-CB201	Natural	0	0	500	500.3	438.4	12	0.015	0.035	0.035
CDC201-CM202	Circular	1.75	0	1179.2	422.7	267.3	14	0.014		
CMD202-CM203	Circular	2.5	0	522.96	257.3	235.6	4	0.014		
CMD202-CM203	Natural	0.05	0	522.96	292.3	243.6	9	0.015	0.035	0.035
CMD203-CDC204	Circular	2.5	0	809.35	235.6	169.1	8	0.014		
CMD203-CDC204	Natural	0	0	809.35	243.6	172.2	9	0.015	0.035	0.035
CMD301-CMC303	Circular	2.5	0	1593.53	72.9	33.8	2	0.014		
CMD301-CMC303	Natural	0	0	1593.53	82.4	59.0	3	0.015	0.035	0.035
COB401-COB402	Natural	0	0	1493.74	0.0	-13.5	0	0.035	0.035	0.035
COB402-MPC501	Natural	0	0	500	-13.5	-18.0	0	0.035	0.035	0.035
EDF301-EDF301	Circular	1.5	0	560.68	385.8	359.4	5	0.014		
EDF301-EDF301	Natural	0.05	0	560	394.3	367.9	5	0.015	0.035	0.035
EDF401-EME402	Circular	3.75	0	245.32	85.7	77.5	3	0.014		
EDF401-EME402	Natural	0	0	245.32	86.8	81.8	3	0.015	0.035	0.035
EME402-EME403	Natural	0	0	913.41	81.8	57.0	3	0.015	0.035	0.035
EME402-EME403	Circular	3.75	0	913.41	77.5	52.0	3	0.014		
EME403-EME404	Circular	3.75	0	770						

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-2. 10-year Improvements Link Input Data

Appendix D-2: 10-year implementation limit input data								
EDF501-UMD401	Trapezoidal	6	10	236	7.0	5.9	0	0.014
EDF301-EME301	Circular	1.7	0	1127.47	359.4	201.6	14	0.014
EDF301-EME301	Natural	0	0	1127.47	367.9	210.1	14	0.015
EME301-EME403	Circular	3.75	0	944.32	201.6	110.6	10	0.014
NMC501-MPC502	Circular	4	0	2071.73	0.0	-11.6	1	0.014
NMC501-MIC501	Natural	0	10	629.46	0.0	-3.2	1	0.05
MIC501-MCC501	Circular	3	10	235.54	-3.2	-4.5	1	0.05
MCC501-MPC502	Natural	0	10	1417.74	-4.5	-11.6	1	0.05
NDA201-NMA201	Circular	4	0	383.23	31.2	30.5	0	0.014
NDA201-NMA201	Natural	0.05	0	383	36.1	35.7	0	0.03
NDA301-NDA302	Circular	2	0	229.05	35.7	29.7	3	0.014
NDA301-NDA302	Natural	0	0	212	36.8	36.0	1	0.015
NDA302-NMA302	Natural	0	0	669.58	36.0	27.9	1	0.015
NDA302-NMA302	Circular	2	0	669.58	29.7	12.3	3	0.014
NDB201-NMA201	Circular	2	0	1382.84	77.3	33.1	3	0.014
NDB201-NMA201	Natural	0	0	1362.84	85.6	35.7	4	0.015
NMA201-NMA304	Circular	4	0	768.96	30.5	17.6	2	0.014
NMA201-NMA304	Natural	0.05	0	730	35.7	25.1	1	0.03
NIA201-NDA203	Circular	3.5	0	203.42	73.0	66.0	2	0.014
NIA202-NDA201	Circular	3.5	0	958.44	51.2	31.2	2	0.014
NMA301-NMA302	Circular	3.5	0	557.89	16.3	12.3	1	0.014
NMA302-NMA303	Circular	3.5	0	170.1	12.3	8.0	3	0.014
NMA303-NOA301	Rectangular	5	8	1066.01	8.0	3.0	0	0.014
NMA304-NMA301	Rectangular	2	5	145.37	17.8	16.3	1	0.014
NMA304-SDA301	Natural	0	0	1096	17.8	11.3	1	0.015
NDA201-NOA202	Natural	0	0	75.23	77.0	75.0	3	0.05
NOA222-NIA201	Natural	0	0	112.27	75.0	73.0	2	0.05
NOA203-NMA202	Natural	0	0	675.95	66.0	51.2	2	0.05
NDA301-NOA302	Natural	0	0	707.09	3.0	0.5	0	0.005
NOA302-NIA301	Natural	0	0	44.302	0.5	0.5	0	0.005
NI301-NOA305	Rectangular	4	6	84.738	0.5	0.4	0	0.005
NOA305-NOA304	Natural	0	0	457.85	0.4	0.3	0	0.005
NDA303-CDB401	Natural	0	0	2072.24	0.1	0.0	0	0.005
NOA304-NOA303	Natural	0	0	475.18	0.3	0.1	0	0.005
NDB201-NOB202	Natural	0	0	406.76	115.0	92.0	6	0.025
NDB202-NDA291	Natural	0	0	645.55	92.0	77.0	2	0.05
NOC502-NOC500	Circular	8	0	60	0.6	-2.0	4	0.015
NOC502-NOC500	Trapezoidal	6	0	60	0.6	-2.0	4	0.015
NOB501-NOB500	Trapezoidal	1	0	60	9.6	9.5	0	0.035
NOB501-NOB500	Rectangular	15	100	80	10.0	9.9	0	0.035
NOB501-NOB500	Rectangular	15	15	60	-2.0	-2.0	0	0.015
SDA301-SJA301	Rectangular	4	4	110.93	11.3	10.2	1	0.014
SDA305-SDA302	Natural	0.5	0	80	6.8	6.0	1	0.015
SDA306-SDA302	Rectangular	4	4	78	2.8	2.0	1	0.014
SJA301-SDA305	Rectangular	4	4	738.04	10.2	2.8	1	0.014
SJA302-SDA301	Rectangular	4	6	115.19	2.0	1.5	0	0.014
SDB201-SDB301	Circular	1.5	0	945.75	97.6	69.5	3	0.014
SDB301-SDB302	Circular	1.25	0	382.42	66.5	37.4	8	0.014
SDB302-SDB303	Natural	0.5	0	382.42	72.7	41.2	8	0.015
SDB303-SMA301	Circular	1.5	0	313.86	37.4	30.0	8	0.014
SMA301-SDA301	Rectangular	2.4	3.3	223.84	2.6	1.5	0	0.005
SDA301-NDA303	Natural	4.5	6	60	1.5	1.5	0	0.005
SDA303-NOA302	Circular	4	0	213.69	1.5	0.5	0	0.014
SDA303-NOA302	Circular	4	0	213.69	1.5	0.5	0	0.014
SDA303-NOA302	Circular	4	0	213.69	1.5	0.5	0	0.014
SDA303-NOA302	Circular	4	0	213.69	1.5	0.5	0	0.014
SM303-SDA303	Circular	1.75	0	440.53	17.0	12.9	1	0.014
SM303-SDA303	Natural	0	0	440.53	21.5	17.5	1	0.015
SDA303-SDA304	Natural	0.5	0	62.57	17.5	16.0	2	0.015
SDA304-SDA301	Natural	0.5	0	104.93	17.5	16.0	1	0.015
SDA303-SDA304	Circular	1.75	0	62.57	12.9	12.3	1	0.014
SDA304-SDA301	Circular	1.75	0	104.93	12.3	11.3	1	0.014
SJA304-SJA301	Circular	3.5	0	106.34	12.3	10.2	2	0.014
UD301-UDE302	Circular	3.5	0	980.83	350.4	246.0	10	0.014
UDE301-UDE302	Natural	0.05	0	983	354.2	252.7	10	0.015
UDE302-UDE302	Circular	3.7	0	1616.49	248.9	96.8	9	0.014
UDF301-UDE301	Circular	2	0	731.24	426.5	350.4	10	0.014
UDF301-UDE301	Natural	0.05	0	722	431.5	352.4	11	0.015
UMD301-UDJ301	Natural	0	0	1175.34	136.3	101.4	3	0.04
UDJ301-UDJ300	Rectangular	3	4	454	101.4	88.1	3	0.04
UDJ301-UDJ300	Natural	0	0	211.67	88.1	81.8	3	0.04
UMD302-UMJ401	Circular	2	0	1282.54	81.8	74.9	1	0.014
UMJ401-MIC502	Natural	0	0	1984.55	5.9	2.9	0	0.005
MIC502-MCC502	Rectangular	8	15	300	2.9	2.5	0	0.005
MCC502-NOC502	Natural	0	0	1263.37	2.5	1.0	0	0.005
UME301-UME301	Natural	0	0	1394.03	233.0	130.3	6	0.04
UME302-UME401	Circular	4.2	0	1520.45	99.8	65.3	2	0.014
UME302-UME401	Natural	0	0	1502	109.0	77.5	2	0.015
UME401-UDD401	Circular	4.5	0	664.931	65.3	51.3	2	0.014
UME401-UDJ401	Natural	0.05	0	650	77.5	63.1	2	0.015
UDD401-UDD402	Circular	4.5	0	892.919	51.3	32.5	2	0.014
UDD401-UDD402	Natural	0	0	892.919	63.1	42.2	2	0.015
UME401-UDM401_2.1	Circular	4.5	0	1259.88	32.5	5.9	2	0.014
UME201-UAE301	Natural	0	0	1467.47	363.3	223.0	11	0.04
NOC501-NOB850	Natural	0	0	1567.79	0.8	0.0	0	0.005

(THIS PAGE LEFT BLANK INTENTIONALLY)

C3

Improvements Inputs 100-year

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-3. 100-year Improvements Link Input Data

Appendix C-3. 100-year Improvements Link Input Data

Link Name	Shape	Orientation	Width (ft)	Length (ft)	Topographic Input Elevation (ft)	Demographic Input Elevation (ft)	Conduit Slope (percent)	Hydrograph Input (in)	Last Conduit Modulus (in)	Right Conduit Modulus (in)
NIC501-NIC501	Rectangular	8	15	300	1	0	0	0.014		
NOC501-NOB501	Natural	0	0	1567.79	1	0	0	0.05	0.035	0.035
CMD303-CMD302	Circular	2	0	279	106	82	8	0.014		
CMD302-CMD301	Circular	2	0	360	82	75	2	0.014		
CMD302-CMD301	Natural	0	0	360	92	82	3	0.015	0.035	0.035
CMD304-CMD303	Circular	2	0	126	109	106	2	0.014		
CMD305-CMD304	Circular	2	0	38	110	109	3	0.014		
CMD306-CMD305	Circular	2	0	122	114	110	3	0.014		
NIC501-NIC501	Rectangular	8	15	300	1	0	0	0.014		
NIC501-NIC501	Rectangular	8	15	300	1	0	0	0.014		
NIC501-NIC501	Rectangular	8	15	300	1	0	0	0.014		
CDB101-CMB101	Circular	1.5	0	431.11	314	302	3	0.014		
CDB101-CMB101	Natural	0.05	0	365	319	307	3	0.015	0.035	0.035
CDC101-CDI103	Circular	2.25	0	707.75	285	246	5	0.014		
CDC101-CDI103	Natural	0	0	707.75	290	250	6	0.015	0.035	0.035
CDC102-CMC104	Circular	2.75	0	555.64	262	231	6	0.014		
CDC102-CMC104	Natural	0	0	743	272	240	4	0.015	0.035	0.035
CDC104-CDC103	Circular	2.5	0	410.35	229	219	2	0.014		
CDC103-CMC102	Circular	2.5	0	157.34	246	242	3	0.014		
CDC103-CMC102	Natural	0.05	0	157.34	250	247	2	0.015	0.035	0.035
CDC201-CDC202	Trapezoidal	1	2	666.73	240	190	8	0.014		
CDC202-CDC202	Circular	1.25	0	94.09	190	161	31	0.014		
CDC202-CDC205	Natural	0.05	0	80	194	169	31	0.015	0.035	0.035
CDC203-CDC206	Circular	3	0	171.2	217	215	1	0.014		
CDC203-CDC206	Natural	0.05	0	171.2	222	222	0	0.015	0.035	0.035
CDC206-CMC201	Circular	3	0	163.02	215	213	1	0.014		
CDC206-CMC201	Natural	0.5	0	163.02	222	223	0	0.015	0.035	0.035
CDC204-CDC207	Circular	3	0	101.05	166	150	18	0.014		
CDC204-CDC207	Natural	0.05	0	101	173	157	16	0.015	0.035	0.035
CDC207-CMC204	Circular	3	0	155	150	123	18	0.014		
CDC207-CMC204	Natural	0	0	155	157	131	17	0.015	0.035	0.035
CDC205-CMC203	Natural	0	0	2678.64	161	75	3	0.05	0.035	0.035
CDC301-CMC310	Circular	4	0	434.54	74	73	0	0.014		
CDC301-CMC310	Natural	0	0	434.54	82	62	0	0.015	0.035	0.035
CDC302-CDC305	Circular	1.25	0	160.9	86	80	3	0.014		
CDC302-CDC305	Natural	0.05	0	180.9	90	84	4	0.015	0.035	0.035
CDC305-CDC303	Natural	0.05	0	644.62	84	67	3	0.015	0.035	0.035
CDC305-CDC303	Circular	1.25	0	463.72	80	64	3	0.014		
CDC303-CDC304	Circular	1.25	0	171.81	64	61	2	0.014		
CDC303-CDC304	Natural	0.05	0	171.81	67	66	1	0.015	0.035	0.035
CDC304-CMC301	Circular	4	0	966.91	61	37	2	0.014		
CDC304-CMC301	Natural	0	0	966.91	66	47	2	0.015	0.035	0.035
CDC401-CMC403	Rectangular	4	5.7	380.72	14	14	0	0.014		
CDC401-CMC403	Rectangular	4	5.7	380.72	14	14	0	0.014		
CDC401-CMC403	Circular	4	0	380.72	14	14	0	0.015	0.035	0.035
CDC402-CJC401	Circular	2.5	0	291.57	1	-2	1	0.014		
CDD101-GDC104	Circular	2	0	690.61	306	229	24	0.014		
CJA301-NOA303	Circular	3.5	0	443.95	1	0	0	0.014		
CMB101-CDC201	Circular	1.75	0	914.66	302	240	7	0.014		
CJB301-CJB302	Circular	3.5	0	978.19	14	3	1	0.014		
CJB302-CJA301	Circular	3.5	0	1086.9	3	1	0	0.014		
CMC102-CMC104	Circular	3	0	273.75	242	231	4	0.014		
CMC102-CMC104	Natural	0	0	268.77	247	240	2	0.015	0.035	0.035
CMC103-CDC102	Circular	2.25	0	890.52	314	262	6	0.014		
CMC104-CMC201	Circular	4	0	717.66	231	213	2	0.014		
CMC104-CMC201	Natural	0.05	0	800	240	223	2	0.015	0.035	0.035
CMC201-CDC205	Circular	4	0	504.94	213	161	10	0.014		
CMC201-CDC205	Natural	0	0	504.94	223	169	11	0.015	0.035	0.035
CMC203-CDC301	Circular	4	0	137.77	75	74	1	0.014		
CMC203-CDC301	Natural	0	0	137.77	83	82	1	0.015	0.035	0.035
CMC203-CJC301	Circular	3.5	0	786.19	79	38	5	0.014		
CMC204-CDC208	Circular	4	0	776.35	123	101	3	0.014		
CMC204-CDC208	Natural	0.05	0	1010	131	113	2	0.015	0.035	0.035
CDC208-CMC306	Circular	4	0	1180.16	101	68	3	0.014		
CDC208-CMC306	Natural	0	0	1066	113	86	2	0.015	0.035	0.035
CMC301-CDC306	Circular	5	0	242.76	37	35	1	0.014		
CMC301-CDC306	Natural	0.05	0	242	47	44	1	0.015	0.035	0.035
CDC306-CMC406	Circular	5	0	2606.43	35	6	1	0.014		
CDC302-CMC304	Circular	4	5.7	730.11	31	21	1	0.014		
CDC302-CMC304	Natural	0	0	675	38	31	1	0.015	0.035	0.035
CDC302-CMC401	Circular	4.5	0	1112.4	31	20	1	0.014		
CDC302-CMC401	Natural	0.16	0	1138	36	25	1	0.015	0.035	0.035
CMC303-CMC304	Circular	3.5	0	594.23	34	31	2	0.014		
CMC303-CMC304	Natural	0.05	0	594.23	39	31	1	0.015	0.035	0.035
CMC304-CMC401	Circular	3.5	5.7	440.65	21	20	0	0.014		
CMC304-CMC401	Natural	0	0	440.65	31	26	1	0.015	0.035	0.035
CMC306-CMC309	Circular	4	0	905.03	68	51	2	0.014		
CMC306-CMC309	Natural	0	0	905.03	86	60	3	0.015	0.035	0.035
CJC309-CMC302	Circular	4.5	0	1144.97	51	31	2	0.015	0.035	0.035
CJC309-CMC302	Natural	0	0	1041.56	60	37	2	0.015	0.035	0.035
CJC310-CDC304	Circular	4	0	832.76	73	61	1	0.014		
CJC310-CJB301	Circular	3.5	0	1973.78	38	14	1	0.014		
CJC312-GMD301	Circular	2	0	1045.78	79	73	1	0.014		
CMC401-CDI401	Rectangular	4	5.7	524.42	20	14	1	0.014		
CMC401-CDI401	Rectangular	4	5.7	524.42	20	14	1	0.014		
CMC401-CDI401	Circular	4	0	524.42	20	14	1	0.014		
CJC402-CJC403	Circular	2	0	446.6	23	14	2	0.014		
CJC403-CMC407	Natural	0	0	446.6	31	21	2	0.015	0.035	0.035
CJC403-CMC407	Rectangular	4	5.7	736.07	14	9	1	0.014		
CJC403-CMC407	Rectangular	4	16	395	9	5	1	0.014		
CJC403-CMC407	Rectangular	4	5.7	735.07	14	9	1	0.014		
CJC403-CMC407	Circular	4	0	735.07	14	9	1	0.014		
CJC404-MIC401	Natural	0	0	1133.91	4	2	0	0.035	0.035	0.035
MIC401-MOC401	Rectangular	8	15	76	2	2	0	0.035	0.035	0.035
MIC401-NIC501	Natural	0	0	415	2	1	0	0.035	0.035	0.035
CJC405-CMC402	Circular	1.75	0	304.95	26	23	1	0.014		
CJC405-CMC402	Natural	0.05	0	304.95	40	31	2	0.015	0.035	0.035
CJC406-CMC404	Circular	5.5	0	1341.37	6	4	0	0.014		
CJC407-CMC404	Circular	4.5	5.7	142.26	5	4	1	0.014		
CJC407-CMC404	Circular	2.75	0	1424.09	-2	-18	1	0.014		
CMD001-CDD201	Circular	1.75	0	500	493	423	14	0.014		
CMD001-CDD201	Natural	0	0	500	500	438	12	0.015	0.035	0.035
CDD001-CMD202	Circular	1.75	0	1175.2	423	257	14	0.014		
CMD002-CMD203	Circular	2.5	0	522.96	257	236	4	0.014		
CMD002-CMD203	Natural	0.05	0	522.96	292	244	9	0.015	0.035	0.035
CMD003-CDC204	Circular	3	0	809.35	236	168	8	0.014		
CMD003-CDC204	Natural	0	0	809.35	244	173	9	0.015	0.035	0.035
CMD003-CMC303	Circular	2.5	0	1593.53	73	34	2	0.014		
CMD003-CMC303	Natural	0	0	1593.53	82	39	3	0.015	0.035	0.035
COB401-COB402	Natural	0	0	1493.74	0	-13	0	0.035	0.035	0.035
COB402-MPC501	Natural	0	0	500	-13	-18	0	0.035	0.035	0.035
EDE301-EDF301	Circular	1.5	0	580.68	386	359	5	0.014		
EDE301-EDF301	Natural	0.05	0	580	394	368	5	0.015	0.035	0.035
EDE401-EHE402	Circular	3.75	0	245.32	86	78	3	0.014		
EDE401-EHE402	Natural	0	0	245.32	90	82	3	0.015	0.035	0.035
EDE402-EHE403	Natural	0	0	913.41	82	57	3	0.015	0.035	0.035
EDE402-EHE403	Circular	3.75	0	913.41	78	60	3	0.016		

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-3. 100-year improvements Link Input Data

Link Number	Link Type	Channel Type	Order Number	Length (ft)	Width (ft)	Depth (ft)	Flow Area (ft ²)	Hydraulic Radius (ft)	Man Hole	Man Hole Depth (ft)	Man Hole Width (ft)	Man Hole Length (ft)	Right Of Way Width (ft)
EME403-EME404	Circular	3.75	0	770	52	36	2	0.014					
EME403-EME404	Natural	0.05	0	766	57	41	2	0.015					
EDF403-EME401	Circular	3.75	0	271.73	111	104	2	0.014					
EDF401-EME401	Natural	0	0	271.73	119	112	3	0.015					
EME401-EME401	Circular	3.75	0	815	104	86	2	0.014					
EME404-EO40501	Natural	0	0	815	112	90	3	0.015					
EME404-EO40501	Circular	5	0	1245	35	7	2	0.014					
EDO501-UJD401	Trapezoidal	6	10	236	7	6	0	0.014					
EDF301-EME301	Circular	1.7	0	1127.47	359	202	14	0.014					
EDF301-EME301	Natural	0	0	1127.47	368	219	14	0.015					
EME301-ED403	Circular	3.75	0	944.32	202	111	10	0.014					
MMC501-MPC502	Circular	5	0	2071.73	0	12	1	0.014					
MMC501-MIC501	Natural	0	10	629.46	0	3	1	0.05					
MIC501-MOC501	Circular	3	10	235.54	-3	-4	1	0.05					
MOC501-MPC502	Natural	0	10	1417.74	-4	-12	1	0.05					
NDA201-NMA201	Circular	4	0	363.23	31	31	0	0.014					
NDA201-NMA201	Natural	0.05	0	383	36	36	0	0.03					
NDA301-NDA302	Circular	2	6	229.06	36	30	3	0.014					
NDA301-NDA302	Natural	0	0	212	39	36	1	0.015					
NDA302-NMA302	Natural	0	0	668.58	36	28	1	0.015					
NDA302-NMA302	Circular	2	0	668.58	30	12	3	0.014					
NDB201-NMA201	Circular	2	0	1362.64	77	33	3	0.014					
NDB201-NMA201	Natural	0	0	1362.64	66	36	4	0.016					
NMA201-NMA304	Circular	4	0	788.96	31	18	2	0.014					
NMA201-NMA304	Natural	0.05	0	730	36	25	1	0.03					
NIA201-NDA203	Circular	3.5	0	203.42	73	68	2	0.014					
NIA202-NDA201	Circular	3.5	0	958.44	51	31	2	0.014					
NMA301-NMA302	Circular	3.5	0	557.89	16	12	1	0.014					
NMA302-NMA303	Circular	3.5	0	170.1	12	8	3	0.014					
NMA303-NDA301	Rectangular	5	8	1086.01	8	3	0	0.014					
NMA304-SDA301	Rectangular	2	5	145.37	18	16	1	0.014					
NMA304-SDA301	Natural	0	0	1096	16	11	1	0.015					
NOA201-NOA202	Natural	0	0	76.23	77	76	3	0.06					
NOA202-NIA201	Natural	0	0	112.27	75	73	2	0.05					
NOA203-NIA202	Natural	0	0	675.98	68	51	2	0.05					
NOA301-NIA302	Natural	0	0	707.05	3	1	0	0.05					
NOA302-NIA301	Natural	0	0	44.302	1	0	0	0.035					
NIJ301-NDA305	Rectangular	4	6	84.738	0	0	0	0.035					
NOA305-NDA304	Natural	0	0	457.85	0	0	0	0.035					
NOA303-NCA401	Natural	0	0	2072.24	0	0	0	0.035					
NOA304-NCA303	Natural	0	0	475.18	0	0	0	0.035					
NOA302-NCA402	Natural	0	0	406.76	115	92	6	0.025					
NOB202-NDA201	Natural	0	0	645.55	92	77	2	0.035					
NC502-NO500	Circular	8	0	60	1	-2	4	0.015					
NC502-NO500	Circular	8	0	60	1	-2	4	0.015					
NC502-NO500	Trapezoidal	1	0	60	10	10	0	0.035					
NBB501-NOB500	Trapezoidal	1	100	60	10	10	0	0.036					
NBB501-NOB500	Rectangular	15	15	60	-2	-2	0	0.016					
NBB501-NOB500	Rectangular	15	15	60	-2	-2	0	0.015					
SDA301-SJA301	Rectangular	4	4	110.93	11	10	1	0.014					
SDA305-SDA302	Natural	0.5	0	86	7	6	1	0.015					
SDA305-SDA302	Rectangular	4	4	78	3	2	1	0.014					
SJA301-SJA305	Rectangular	4	4	739.04	10	3	1	0.014					
SDA302-SJA301	Rectangular	4	6	115.19	2	2	0	0.014					
SDB301-SDB301	Circular	1.5	0	945.75	98	70	3	0.014					
SDB301-SDB302	Circular	1.25	0	362.42	70	37	6	0.014					
SDB301-SDB302	Natural	0.5	0	362.42	73	41	8	0.015					
SDB302-SDB303	Circular	2	0	313.68	37	20	6	0.014					
SDB303-SDA301	Circular	3	0	1210.94	20	3	1	0.014					
SMA301-SCA301	Rectangular	2.4	3.3	223.84	3	2	0	0.035					
SCA301-NDA303	Natural	4.5	6	60	2	2	0	0.035					
NDA303-NDA302	Circular	4	0	213.69	2	1	0	0.014					
NDA303-NDA302	Circular	4	0	213.69	2	1	0	0.014					
NDA303-NDA302	Circular	4	0	213.69	2	1	0	0.014					
NDA304-SJA301	Circular	3.5	0	108.34	12	10	2	0.014					
SMB303-SDA303	Circular	1.75	0	440.53	17	13	1	0.014					
SMB303-SDA303	Natural	0	0	440.53	22	16	1	0.035					
SDA303-SDA304	Natural	0.5	0	62.67	18	16	2	0.015					
SDA304-SDA301	Natural	0.5	0	104.93	16	16	1	0.015					
SDA303-SDA304	Circular	1.75	0	62.57	13	12	1	0.014					
SDA304-SDA301	Circular	1.75	0	104.93	12	11	1	0.014					
UDE301-UDE302	Circular	3.5	0	980.63	350	249	10	0.014					
UDE301-UDE302	Natural	0.05	0	983	354	257	10	0.015					
UDE302-UDE302	Circular	3.7	0	1616.49	249	97	9	0.014					
UDF301-UDE301	Circular	2	0	731.24	427	350	10	0.014					
UDF301-UDE301	Natural	0.05	0	722	432	354	11	0.015					
UDI301-UDE301	Natural	0	0	1175.34	136	101	3	0.04					
UDI301-UDE301	Rectangular	3	4	454	101	86	3	0.04					
UDM302-UDE401	Circular	2	0	1282.54	82	75	1	0.014					
UDM401-MIC502	Natural	0	0	1964.55	6	3	0	0.035					
MIC502-MOC502	Rectangular	8	15	300	3	2	0	0.035					
MOC502-NO502	Natural	0	0	1263.37	2	1	0	0.035					
UME301-UMD301	Natural	0	0	1364.03	223	136	6	0.04					
UME302-UME401	Circular	4.2	0	1520.45	97	85	2	0.014					
UME401-UME401	Circular	4.5	0	1502	109	76	2	0.015					
UME401-UME401	Natural	0.05	0	650	78	63	2	0.015					
UDD401-UDD402	Circular	4.5	0	892.919	51	32	2	0.014					
UDD401-UDD402	Natural	0	0	892.919	63	42	2	0.015					
UME401-UMD401.2.1	Circular	4.5	0	1259.98	32	6	2	0.014					
UME401-UMD401.2.1	Natural	0	0	1487.47	383	223	11	0.04					
UMP201-UHE301	Natural	0	0										

(THIS PAGE LEFT BLANK INTENTIONALLY)

C4

Inputs for Nodes

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix C-4. XPSWMM Node Inputs

Node Type	Node Type Name	General Description	Example Text
NDA201	31	36	Allowed
NDB301	72	88	Allowed
NDA301	36	38	Allowed
NHA331	19	27	Allowed
NMA302	12	28	Allowed
NMA303	8	22	Allowed
NIA202	51	70	Allowed
NCB201	115	156	Allowed
NCB202	92	133	Allowed
NIA203	73	81	Allowed
NHA331	77	94	Allowed
NDA303	68	77	Allowed
NDA302	75	66	Allowed
NDA301	3	20	Allowed
NOA302	1	16	Allowed
NOA303	0	12	Allowed
NIC501	1	11	Allowed
NIC502	2	13	Allowed
NHA201	31	39	Allowed
NHA304	18	26	Allowed
CMC103	314	317	Allowed
SM8303	17	22	Allowed
EME301	202	210	Allowed
CMC202	267	292	Allowed
CMC203	246	244	Allowed
CMC201	483	800	Allowed
CMC201	213	223	Allowed
NHA301	3	7	Allowed
CDC302	86	90	Allowed
CMC309	51	60	Allowed
CMC301	37	47	Allowed
CMC309	2	3	Allowed
CMC102	242	247	Allowed
CMC104	231	240	Allowed
CMC510	72	82	Allowed
CMC203	75	83	Allowed
CMC204	123	131	Allowed
CMC106	66	86	Allowed
CMC101	73	82	Allowed
CMC405	26	40	Allowed
CMC402	23	31	Allowed
CMC404	4	14	Allowed
CMC401	4	4	Sealed
CMC401	20	35	Allowed
CMC404	21	31	Allowed
LM3401	6	15	Allowed
LM3402	82	114	Allowed
LM3401	223	316	Allowed
LM3401	136	220	Allowed
UMF201	383	432	Allowed
UMF302	97	100	Allowed
UMF401	0	7	Allowed
UMF401	65	78	Allowed
EOA301	3	8	Allowed
CDC101	285	290	Allowed
CDB101	314	319	Allowed
CDC103	246	250	Allowed
CDC102	262	272	Allowed
CDC204	166	173	Allowed
CDC101	74	82	Allowed
CDC303	64	67	Allowed
CDC304	61	66	Allowed
CMC302	31	38	Allowed
CMC303	34	39	Allowed
CMC403	14	21	Allowed
SM8303	26	24	Sealed
SM8302	37	41	Sealed
SM8301	70	73	Allowed
SM8201	98	100	Allowed
SDA301	11	16	Allowed
UOE301	350	354	Allowed
UOE401	427	432	Allowed
EDF301	386	384	Allowed
EDF301	259	268	Allowed
EDF403	111	119	Allowed
EDF401	86	90	Allowed
CDC203	217	222	Allowed
CDC104	229	233	Allowed
CDC302	396	400	Allowed
WDC501	1	11	Allowed
NDA304	0	10	Allowed
SDA302	2	6	Allowed
EME403	53	57	Allowed
UOE302	249	257	Allowed
CDC202	190	194	Allowed
CMC205	181	189	Allowed
CMC201	240	243	Allowed
CMC101	202	203	Allowed
CDC401	14	20	Allowed
CDC401	0	13	Allowed
CMC401	-16	15	Allowed
MPC501	-18	11	Allowed
MPC402	-12	6	Allowed
CMC402	6	7	Sealed
NDC650	-4	13	Allowed
NDC550	-2	11	Allowed
NDC651	0	12	Allowed
CJC201	38	48	Sealed
CJB301	14	30	Sealed
CJB302	3	14	Sealed
CJA301	1	10	Sealed
CJC407	5	14	Allowed
EME461	104	112	Allowed
CDG768	101	113	Allowed
CDG206	215	222	Allowed
CDG205	80	84	Allowed
CDG107	150	157	Allowed
CDG401	51	61	Allowed
CDG501	423	436	Allowed
CDG306	35	44	Allowed
NDA302	30	38	Allowed
EME404	36	41	Allowed
EDG601	7	16	Allowed
EDG602	-13	11	Allowed
CMC302	82	84	Allowed
CMC303	106	117	Monitored
CMC304	109	123	Allowed
CMC305	110	122	Allowed
CMC306	114	120	Allowed
MIC501	-3	6	Allowed
MIC501	-4	6	Allowed
MIC502	3	12	Allowed
MIC502	2	12	Allowed
MIC401	2	12	Allowed
MOC401	2	12	Allowed
NDA303	2	6	Allowed
SDA303	13	18	Allowed
SDA305	3	7	Allowed
EME402	78	82	Allowed
NDA305	0	17	Allowed
NDA306	0	16	Allowed
SDA304	12	19	Allowed
SJA301	10	17	Allowed
MPC503	-18	11	Allowed
SM8302	37	41	Sealed
CMC312	79	80	None
UD301	101	156	Allowed
UOQ301	86	138	Allowed
CMC406	9	14	None

(THIS PAGE LEFT BLANK INTENTIONALLY)

APPENDIX D

XPSWMM Hydraulic Model Results

- Links
- Nodes

(THIS PAGE LEFT BLANK INTENTIONALLY)

D1

Links

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix D-1. Modeled Link Results

Appendix D-1. Modeled Link Results

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix D-1. Modeled Link Results

Appendix D-1. Mediated Link Results														
Link ID	Link Type	Link Name	Link Description	Link Status	Link Capacity	Link Distance	Link Latency	Link Loss	Link Jitter	Link Throughput	Link Bandwidth	Link Delay	Link Loss	Link Jitter
HDG4303-HD4303	25.6	1.7	0.3	26	2.0	1.2	2.5	27.8	2.1	1.2	36.3	2.8	3.9	2.5
HDG4303-HD4303	21.9	1.7	0.3	26	2.0	1.2	2.5	21.5	2.1	1.2	35.5	2.9	2.8	2.8
HDG4303-HD4302	21.9	1.7	0.3	26	2.0	1.2	2.5	21.5	2.1	1.2	35.5	2.9	2.8	2.8
HDG4303-HD4302	21.9	1.7	0.3	26	2.0	1.2	2.5	21.5	2.1	1.2	35.5	2.9	2.8	2.8
HDG4304-SL4301	20.8	7.2	-3.9	52	7.4	-2.7	-1.9	21.8	7.3	2.7	31.8	7.0	-3.3	26.2
HDG4304-SL4301	18.1	7.6	0.2	19	7.8	0.4	3.5	18.0	7.8	0.4	19.0	7.8	0.7	1.1
HDG4304-SL4301	18.1	7.6	0.2	21	7.8	0.4	3.5	18.0	7.8	0.4	19.0	7.8	0.7	1.1
HDG4303-SL4301	21.2	6.6	-2.7	39	19.3	-0.2	-2.9	18.9	8.6	-0.2	36.2	12.7	-1.3	16.1
HDG4303-SL4301	6.4	4.2	-2.3	-11	-1.6	-1.6	-1.6	7.5	-5.6	-2.2	-10.2	4.4	-1.8	-7.8
UDF301-HD4301	66.8	23.4	0.5	99	23.3	0.5	11.4	98.2	27.3	0.5	163.1	31.1	-2.6	-61.4
UDF301-HD4301	26.5	9.3	0.3	91	11.3	0.3	6.8	27.0	9.3	0.3	65.0	9.5	0.5	27.0
UDF302-LME332	137.4	36.1	-6.7	219	31.0	0.5	16.5	132.5	34.4	0.5	220.7	31.1	0.5	137.4
UDF302-LME332	48.4	21.8	0.3	40	21.6	0.5	10.8	62.0	25.9	0.5	76.5	24.3	0.3	7.2
UDF301-LME331	13.0	7.7	0.3	58	11.5	0.5	6.7	6.0	6.0	0.5	31.1	10.4	0.3	9.1
UDG301-LG4301	11.5	5.9	-2.5	107	7.0	-2.4	-3.0	11.5	5.5	-4.6	19.7	2.0	-0.5	35.2
UDG301-LG4301	108.6	3.3	26.0	-311	5.3	18.3	-60.3	118.5	15.2	15.1	18.9	16.0	-18.2	1.1
UDG301-LG4302	14.8	-	-	-	-	-	-	142.9	3.3	-	360.0	3.3	-4.8	-15.8
UDG301-LME431	26.4	9.0	-0.6	36	10.5	0.5	9.7	39.4	9.0	0.5	35.5	10.5	0.6	5.8
MIC4302-MOC507	561.1	3.2	-2.0	872	3.1	-0.4	-0.4	271	-2.6	-0.4	874.6	2.9	-0.5	-0.9
MIC4302-MOC507	557.6	3.2	-2.0	869	3.0	-0.4	-0.4	533.4	1.3	-0.4	869.6	2.8	-0.5	-0.9
MOC4302-MOC507	528.7	2.1	-1.5	858	2.6	-0.1	-0.3	529.2	2.1	-0.1	872.3	2.4	0.7	1.8
MOC4301-MOC507	81.9	4.2	-9.1	139	5.4	-90.8	-499.2	81.6	4.2	-90.6	130.1	5.4	-90.8	-480.2
MOC4301-MOC507	17.3	1.6	-0.6	86	17.5	0.5	9.4	184.8	17.5	0.5	244.6	17.5	0.6	8.0
MOC4301-MOC507	0.0	0.0	0.0	52	8.5	0.5	3.5	19.0	0.5	0.5	24.5	8.5	0.5	3.1
MOC4301-MOC507	227.9	18.7	8.6	309	19.2	0.5	10.3	233.6	18.8	0.5	287.8	18.7	0.6	5.6
MOC4301-MOC507	0.0	0.0	0.0	95	8.6	0.5	3.5	0.0	0.0	0.5	56.1	6.9	0.6	3.0
UDG4301-LME4301	227.7	8.7	6.4	261	18.5	2.9	37.0	233.3	18.7	2.0	279.2	18.5	2.0	57.0
UDG4301-LME4301	0.0	0.0	0.0	43	2.0	0.5	3.5	0.0	0.0	0.5	43.0	2.7	0.5	1.1
UDF4301-LME4301	226.3	17.5	2.0	285	18.0	2.0	35.8	231.6	17.6	2.0	283.9	17.9	2.0	35.8
UDF4301-LME4301	33.8	5.5	-6.2	-41	6.6	-40.0	-202.1	35.6	5.5	-46.0	61.1	6.8	-48.0	-32.0

(THIS PAGE LEFT BLANK INTENTIONALLY)

D2

Nodes

(THIS PAGE LEFT BLANK INTENTIONALLY)

Appendix D-2. Model Node Results

Node Name	Ground Elevation (ft DGL)	Ground Elevation (ft)	10-Year Max. Water Elevation (ft)	10-Year Elevation (ft)	10-Year Max. Water Elevation (ft)	10-Year Elevation (ft)	10-Year Max. Water Elevation (ft)	10-Year Elevation (ft)	10-Year Max. Water Elevation (ft)	10-Year Elevation (ft)	10-Year Max. Water Elevation (ft)	10-Year Elevation (ft)	
CDC101	319.4	313.7	314.8	4.6	319.5	-0.1	319.5	-0.1	319.5	-0.1	319.5	-0.1	
CDC101	290.1	284.5	289.8	0.4	290.1	0.1	286.1	0.1	290.1	0.1	290.1	0.1	
CDC101	290.1	284.5	289.8	0.4	290.1	0.1	280.1	0.1	290.1	0.1	290.1	0.1	
GDC102	271.6	263.4	262.9	7.8	271.4	1.4	270.4	1.4	270.4	1.4	270.4	1.4	
GDC103	249.9	246.7	250.3	-0.4	250.6	-0.6	250.8	-0.6	250.6	-0.6	250.6	-0.6	
GDC201	242.6	239.8	240.5	2.2	240.9	1.9	240.9	1.9	240.9	1.9	240.9	1.9	
GDC203	221.6	218.9	219.6	2.0	223.8	-2.3	223.8	-2.3	223.8	-2.3	223.8	-2.3	
GDC203	221.6	218.9	219.6	2.0	223.8	-2.3	223.8	-2.3	223.8	-2.3	223.8	-2.3	
GDC204	173.2	168.1	169.9	3.2	173.6	-0.4	173.6	-0.4	170.4	2.7	170.4	2.7	
GDC205	188.0	180.7	183.5	5.5	184.0	5.0	184.0	5.0	184.0	5.0	184.0	5.0	
GDC206	232.4	215.1	217.7	4.6	223.8	-1.5	223.8	-1.5	220.4	1.9	220.4	1.9	
GDC207	178.4	190.1	182.4	4.5	187.3	-0.4	187.3	-0.4	185.5	3.3	185.5	3.3	
GDC208	113.0	108.0	115.5	-0.5	115.5	0.5	115.9	0.9	115.9	0.9	115.9	0.9	
GDC301	81.5	73.6	82.0	6.5	84.4	-2.8	84.4	-2.8	84.4	-2.8	84.4	-2.8	
GDC302	90.0	85.7	90.2	-0.2	90.3	-0.3	90.3	-0.3	90.3	-0.3	90.3	-0.3	
GDC303	67.0	63.9	67.3	-0.4	87.5	-0.5	87.5	-0.5	87.5	-0.5	87.5	-0.5	
GDC304	68.1	61.1	64.0	2.1	66.4	-0.3	66.4	-0.3	68.2	-0.1	68.2	-0.1	
GDC305	83.5	79.5	83.7	-0.2	83.6	-0.3	83.8	-0.3	83.6	-0.3	83.6	-0.3	
GDC306	44.0	34.6	38.5	5.5	44.5	-0.5	44.5	-0.5	44.3	-0.3	44.3	-0.3	
GDC401	20.2	14.2	18.6	1.6	21.4	-2.2	22.4	-2.2	20.1	0.1	20.1	0.1	
GDC402	12.0	1.0	13.5	-1.5	14.3	-2.3	14.3	-2.3	13.4	-1.4	13.4	-1.4	
GDC402	12.0	1.0	13.5	-1.5	14.3	-2.3	14.3	-2.3	13.4	-1.4	13.4	-1.4	
GDD001	396.9	396.0	397.6	3.2	396.9	3.0	396.9	3.0	396.9	3.0	396.9	3.0	
GDD001	422.4	422.4	423.8	14.7	429.9	8.4	429.9	8.5	420.0	8.3	420.0	8.3	
CM8101	306.7	305.6	302.3	4.4	305.5	4.2	305.5	4.2	305.5	4.2	305.5	4.2	
CM8102	347.1	241.6	247.6	-0.5	247.6	-0.7	247.9	-0.7	247.8	-0.6	247.8	-0.6	
CMC103	317.1	314.3	315.2	1.9	315.5	1.6	315.5	1.6	315.5	1.6	315.5	1.6	
CMC104	240.4	233.6	240.5	-0.1	241.3	-0.6	241.3	-0.6	240.8	-0.5	240.8	-0.5	
CMC201	223.1	213.4	215.9	7.2	223.4	-0.3	223.4	-0.3	218.5	8.6	218.5	8.6	
CMC203	83.0	75.0	83.3	-0.3	84.4	-1.4	84.4	-1.4	84.7	-1.7	84.7	-1.7	
CMC204	130.5	122.5	131.1	-0.6	131.5	-1.0	131.5	-1.0	131.1	-0.6	131.1	-0.6	
CMC301	46.7	37.3	40.9	5.8	46.9	-0.2	46.9	-0.2	48.8	-0.1	48.8	-0.1	
CMC302	37.8	30.6	38.4	-0.6	39.0	-1.2	39.0	-1.2	38.6	-0.8	38.6	-0.8	
CMC303	39.6	33.8	38.5	-0.5	39.8	-0.6	39.8	-0.6	39.7	-0.7	39.7	-0.7	
CMC304	30.8	25.8	30.9	-0.1	31.8	-0.6	31.8	-0.6	31.6	-0.6	31.6	-0.6	
CMC305	96.5	89.5	95.1	-0.3	95.2	-0.3	95.2	-0.3	97.0	-0.2	97.0	-0.2	
CMC306	60.4	51.2	60.8	-0.5	61.2	-0.8	61.2	-0.8	60.9	-0.5	60.9	-0.5	
CMC310	82.5	73.2	76.5	5.7	84.4	-1.9	84.4	-1.9	80.9	1.9	80.9	1.9	
CMC401	79.3	19.6	22.2	3.1	26.9	-1.6	26.9	-1.6	22.7	2.6	22.7	2.6	
CMC402	31.4	22.7	31.5	-0.1	31.8	-0.4	31.8	-0.4	31.8	-0.4	31.8	-0.4	
CMC403	20.6	13.8	17.0	3.5	21.9	-1.4	21.9	-1.4	18.3	3.3	18.3	3.3	
CMC404	13.5	4.3	10.8	2.7	11.9	1.6	11.8	1.6	12.5	1.0	12.5	1.0	
CMC405	40.1	26.5	40.3	-0.2	40.5	-0.4	40.5	-0.4	40.5	-0.4	40.5	-0.4	
CMC406	14.6	9.9	16.0	-1.5	17.7	-3.1	17.7	-3.1	14.9	-0.3	14.9	-0.3	
CMC407	14.0	5.4	11.3	6.7	12.1	1.9	12.1	1.9	12.7	1.3	12.7	1.3	
CMC501	940.5	490.0	495.0	6.5	500.0	5.8	494.9	5.8	494.9	5.8	494.9	5.8	
CMC502	390.3	257.3	288.8	6.5	299.7	-0.4	299.7	-0.4	290.7	-0.4	290.7	-0.4	
CMC503	292.3	287.3	288.8	6.5	292.7	-0.4	292.7	-0.4	290.7	-0.4	290.7	-0.4	
CMC503	243.8	236.8	244.1	-0.5	244.4	-0.6	244.4	-0.6	244.2	-0.4	244.2	-0.4	
CMC504	82.4	72.9	82.8	-0.3	83.0	-0.6	83.0	-0.6	83.0	-0.6	83.0	-0.6	
CMC504	82.4	72.9	82.8	-0.3	83.0	-0.6	83.0	-0.6	83.0	-0.6	83.0	-0.6	
CMC505	93.8	82.5	88.0	4.9	92.0	1.7	92.0	1.7	92.2	1.6	92.2	1.6	
CMC506	117.4	105.7	106.2	11.2	106.8	11.0	106.4	11.0	106.4	11.0	106.4	11.0	
CMC506	123.0	108.6	109.6	13.4	109.8	13.1	109.8	13.1	109.8	13.1	109.8	13.1	
CMC507	121.8	108.6	110.5	11.3	110.7	11.6	110.7	11.6	110.7	11.6	110.7	11.6	
CMC508	113.0	113.5	114.3	5.4	114.5	5.2	114.5	5.2	114.5	5.2	114.5	5.2	
CMC509	12.0	0.0	2.7	9.3	6.2	5.2	6.2	5.2	6.1	5.8	5.8	5.8	
CMC510	11.3	13.5	9.0	12.5	11.1	5.1	11.1	5.1	6.1	1.2	6.1	1.2	
CMC511	18.0	-15.0	15.5	-0.5	40.7	-25.7	40.7	-25.7	11.9	3.1	11.9	3.1	
EDE301	394.3	385.8	384.6	-0.3	394.6	-0.3	384.6	-0.3	394.6	-0.3	394.6	-0.3	
EDE401	88.6	85.7	88.8	0.8	90.3	-0.7	90.3	-0.7	89.7	-1.0	89.7	-1.0	
EDE403	119.1	110.8	113.6	5.5	119.2	-0.6	119.7	-0.6	120.1	-1.3	120.1	-1.3	
EDE301	367.9	359.4	368.0	-0.1	368.3	-0.3	368.3	-0.3	368.3	-0.3	368.3	-0.3	
EDE301	367.9	350.4	388.0	-0.1	368.3	-0.3	368.3	-0.3	368.3	-0.3	368.3	-0.3	
EME301	210.1	201.5	203.7	6.9	203.8	6.4	203.8	6.4	203.8	6.4	203.8	6.4	
EME401	111.7	104.4	107.4	4.3	112.3	-0.6	112.3	-0.6	112.6	-0.9	112.6	-0.9	
EME402	81.8	77.5	81.6	0.2	82.8	-0.7	82.8	-0.7	82.5	-0.7	82.5	-0.7	
EME403	37.0	52.0	51.7	-0.3	57.7	-0.7	57.7	-0.7	57.7	-0.7	57.7	-0.7	
EME404	41.6	34.8	37.3	3.3	41.4	2.2	38.4	2.2	38.2	2.1	38.2	2.1	
EFO901	16.6	7.0	12.7	2.3	14.1	0.8	14.1	0.8	14.5	0.7	14.5	0.7	
EHC401	11.8	1.9	10.2	1.5	11.3	0.4	11.3	0.4	12.1	0.3	12.1	0.3	
MMC501	6.2	-3.2	0.1	8.1	1.9	4.3	1.9	4.3	0.1	0.1	0.1	0.1	
MMC502	12.4	2.9	10.0	2.4	11.5	0.9	11.5	0.9	12.1	0.3	12.1	0.3	
MMC503	65.0	0.0	1.9	4.6	2.5	4.0	2.5	4.0	9.3	-2.8	9.3	-2.8	
MOC401	11.6	1.7	10.2	1.4	11.3	0.3	11.3	0.3	12.1	-0.4	12.1	-0.4	
MOC501	61.1	-4.5	-2.8	8.9	-2.5	8.6	-2.5	8.6	8.6	-2.8	8.6	-2.8	
MOC502	12.1	2.5	10.0	2.0	11.5	0.6	11.5	0.6	12.1	0.0	12.1	0.0	
MPC501	11.0	-18.0	0.0	6.0	6.1	4.5	6.1	4.5	4.9	4.9	4.9	4.9	
MPC502	5.5	-11.8	-4.3	8.8	-3.2	8.7	-3.2	8.7	8.4	8.4	8.4	8.4	
MPC503	15.0	-18.0	-2.5	12.2	-2.5	12.2	-2.5	12.2	12.2	12.2	12.2	12.2	
NOA301	38.1	31.2	38.2	0.0	36.5	-0.3	36.5	-0.3	36.5	-0.3	36.5	-0.3	
NOA301	38.8	35.7	36.6	2.2	36.9	1.9	36.9	1.9	36.9	1.9	36.9	1.9	
NOA302	36.0	29.7	30.6	5.4	30.9	5.1	30.9	5.1	30.9	5.1	30.9	5.1	
NOA303	6.0	1.5	6.3	-0.3	7.2	-1.2	7.2	-1.2	6.9	-0.9	6.9	-0.9	
NOA303	20.0	85.8	73.3	78.5	7.1	89.7	-0.1	89.7	-0.1	85.7	-0.1	85.7	-0.1
NOA301	81.0	73.0	74.6	6.4	76.4	5.6	76.4	5.6	76.4	5.6	76.4	5.6	
NOA302	70.0	51.2	53.3	16.7	55.8	14.2	55.8	14.2	55.8	14.2	55.8	14.2	
NOA302	88.0	78.0	77.2	8.8	77.8	8.2	77.8	8.2	77.6	8.2	77.6	8.2	
NOA303	87.0	68.6	69.5	17.9	70.0	17.0	70.0	17.0	70.0	17.0	70.0	17.0	
NOA301	30.0	3.0	6.3	13.7	7.2	12.6	7.2	12.6	12.8	6.8	12.8	6.8	
NOA302	18.0	0.5	0.3	11.7	7.2	10							

(THIS PAGE LEFT BLANK INTENTIONALLY)

(THIS PAGE LEFT BLANK INTENTIONALLY)

WEST YOST ASSOCIATES